Advertisement

Genetica

, Volume 140, Issue 10–12, pp 505–512 | Cite as

Repetitive sequences associated with differentiation of W chromosome in Semaprochilodus taeniurus

  • Maria Leandra Terencio
  • Carlos Henrique Schneider
  • Maria Claudia Gross
  • Viviane Nogaroto
  • Mara Cristina de Almeida
  • Roberto Ferreira Artoni
  • Marcelo Ricardo Vicari
  • Eliana Feldberg
Article

Abstract

The possible origins and differentiation of a ZZ/ZW sex chromosome system in Semaprochilodus taeniurus, the only species of the family Prochilodontidae known to possess heteromorphic sex chromosomes, were examined by conventional (C-banding) and molecular (cross-species hybridization of W-specific WCP, Fluorescence in situ hybridization (FISH) with telomere (TTAGGG)n, and Rex1 probes) cytogenetic protocols. Several segments obtained by W-specific probe were cloned, and the sequences localized on the W chromosome were identified by DNA sequencing and search of nucleotide collections of the NCBI and GIRI using BLAST and CENSOR, respectively. Blocks of constitutive heterochromatin in chromosomes of S. taeniurus were observed in the centromere of all autosomal chromosomes and in the terminal, interstitial, and pericentromeric regions of the W chromosome, which did not demonstrate interstitial telomeric sites with FISH of the telomere probe. The Rex1 probe displayed a compartmentalized distribution pattern in some chromosomes and showed signs of invasion of the pericentromeric region in the W chromosome. Chromosomal painting with the W-specific WCP of S. taeniurus onto its own chromosomes showed complete staining of the W chromosome, centromeric sites, and the ends of the Z chromosome, as well as other autosomes. However, cross-species painting using this WCP on chromosomes of S. insignis, Prochilodus lineatus, and P. nigricans did not reveal a proto-W element, but instead demonstrated scattered positive signals of repetitive DNAs. Identification of the W-specific repetitive sequences showed high similarity to microsatellites and transposable elements. Classes of repetitive DNA identified in the W chromosome suggested that the genetic degeneration of this chromosome in S. taeniurus occurred through accumulation of these repetitive DNAs.

Keywords

Chromosomal painting FISH Microdissection Microsatellites Repetitive sequences Sex chromosome Transposable elements 

Notes

Acknowledgments

This study was supported by National Council for Scientific and Technological Development (CNPq—141660/2009-0), National Amazon Research Institute/Genetic, Conservations and Evolutionary Biology (INPA/GCBEV), The State of Amazonas Research Foundation (FAPEAM) and Centre for Studies of Adaptation to Environmental Changes in the Amazon (INCT ADAPTA,FAPEAM/CNPq 573976/2008-2), PRONEX/FAPEAM/CNPQ 003/2009.

References

  1. Arnheim N (1983) Concerted evolution of multigene families. In: Nei M, Koehn RK (eds) Genes and Evolution of Genes and Proteins. Sinauer, Sunderland, pp 38–61Google Scholar
  2. Artoni RF, Vicari MR, Endler AL, Cavallaro ZI, Jesus CM, Almeida MC, Moreira-Filho O, Bertollo LAC (2006) Banding pattern of A and B chromosomes of Prochilodus lineatus (Characiformes, Prochilodontidae), with comments on B chromosomes evolution. Genetica 127:277–284. doi: 10.1007/s10709-005-4846-1 PubMedCrossRefGoogle Scholar
  3. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erytrinidae). Braz J Genet 1:103–120Google Scholar
  4. Bohne A, Zhou Q, Amandine D, Schmidt C, Schartl M, Galiana-Arnoux D, Volff JN (2012) Zisupton—A novel superfamily of DNA transposable elements recently active in fish. Mol Biol Evol 29(2):631–645. doi: 10.1093/molbev/msr208 PubMedCrossRefGoogle Scholar
  5. Brooks LD (1988) The evolution of recombination rates. In: Michod RE, Levin BR (eds) The Evolution of Sex. Sianauer, Sunderland, pp 87–105Google Scholar
  6. Canapa A, Cerioni PN, Barucca M, Olmo E, Caputo V (2002) A centromeric satellite DNA may be involved in heterochromatin compactness in gobiid fishes. Chromosome Res 10:297–304. doi: 10.1023/A:1016519708187 PubMedCrossRefGoogle Scholar
  7. Caputo V, Giovannotti M, Cerioni PN, Splendiani A, Tagliavini J, Olmo E (2011) Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): convencional and FISH analysis. Chromosome Res 19:481–491PubMedCrossRefGoogle Scholar
  8. Carvalho NDM, Gross MC, Schneider CH, Terencio ML, Zuanon J, Feldberg E (2012) Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon. Genetica 140:149–158PubMedCrossRefGoogle Scholar
  9. Castro RMC, Vari RP (2004) Detritivores of the South American fish family Prochilodontidae (Teleostei: Ostariophysi: Characiformes): A Phylogenetic and Revisionary Study: Smithsonian Contributions and Studies Series. An Imprint of Smithsonian Books, Washington, D. C. N622Google Scholar
  10. Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128. doi: 10.1038/sj.hdy.6800697 PubMedCrossRefGoogle Scholar
  11. Cioffi MB, Bertollo LAC (2010) Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X1X2Y sex chromosome system in this fish group. Heredity 105:554–561. doi: 10.1038/hdy.2010.18 PubMedCrossRefGoogle Scholar
  12. Cioffi MB, Sanchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V (2011) Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species. Genetica 8:1065–1072. doi: 10.1007/s10709-011-9610-0 CrossRefGoogle Scholar
  13. Dasilva C, Hadji H, Ozouf-Costaz C, Nicaud S, Jaillon O, Weissenbach J, Roest Crollius H (2002) Remarkable compartmentalization of transposable elements and pseudogenes in the heterocromatin of the Tetraodon nigroviridis genome. Proc Natl Acad Sci USA 21:13636–13641CrossRefGoogle Scholar
  14. Diniz D, Laudicina A, Cioffi MB, Bertollo LAC (2008) Microdissection and whole chromosome painting. Improving sex chromosome analysis in Triportheus (Teleostei, Characiformes). Cytogenet Genome Res 122:163–168. doi: 10.1159/000163094 PubMedCrossRefGoogle Scholar
  15. Ellegren H (2011) Sex-chromosome evolution: recent progress and the influence of male and female heterogamety. Nat Rev Genet 12:157–166. doi: 10.1038/nrg2948 PubMedCrossRefGoogle Scholar
  16. Feldberg E, Bertollo LAC, Almeida-Toledo LF, Foresti F, Moreira-Filho O, Santos AF (1987) Biological aspects of Amazonian fishes. IX. Cytogenetic studies in two species of the genus Semaprochilodus (Pisces, Prochilodontidae). Genome 29:1–4CrossRefGoogle Scholar
  17. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46. doi: 10.1038/nrg2008 PubMedCrossRefGoogle Scholar
  18. Gross MC, Schneider CH, Valente GT, Porto JIR, Martins C, Feldberg E (2010) Comparative cytogenetic analysis of the genus Symphysodon (Discus Fishes, Cichlidae): chromosomal characteristics of retrotransposons and minor ribosomal DNA. Cytogenet Genome Res 127:43–53. doi: 10.1159/000279443 CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/96/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Hatanaka T, Henrique-Silva F, Galetti PM Jr (2002) A polymorphic, telomeric-like sequence microsatellite in the neotropical fish Prochilodus. Cytogenet Genome Res 98:308–310. doi: 10.1159/000071054 PubMedCrossRefGoogle Scholar
  21. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780PubMedCrossRefGoogle Scholar
  22. Jesus CM, Galetti PM Jr, Valentini SR, Moreira-Filho O (2003) Molecular characterization and chromosomal location of two families of satellite DNA in Prochilodus lineatus (Pisces, Prochilodontidae), a species with B chromosomes. Genetica 118:25–32. doi: 10.1023/A:1022986816648 PubMedCrossRefGoogle Scholar
  23. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467PubMedCrossRefGoogle Scholar
  24. Jurka J, Bao W, Kojima KK (2011) Families of transposable elements, population structure and the origin of species. Biol Direct 6:44. doi: 10.1186/1745-6150-6-44 PubMedCrossRefGoogle Scholar
  25. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in repbase: repbase submitter and censor. BMC Bioinforma 7:474CrossRefGoogle Scholar
  26. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  27. Machado TC, Pansonato-Alves JC, Pucci MB, Nogaroto V, Almeida MC, Oliveira C, Foresti F, Bertollo LAC, Moreira-Filho O, Artoni RF, Vicari MR (2011) Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae). BMC Genet 12:65. doi: 10.1186/1471-2156-12-65 PubMedCrossRefGoogle Scholar
  28. Mago-Leccia E (1972) Consideraciones sobre la sistematica de la familia prochilodontidae (Osteichthyes, Cypriniformes), con una sinopsia de las especies de Venezuela. Acta Biol Venezuelica 8(Suppl 1):35–96Google Scholar
  29. Marreta ME, Faldoni FLC, Parise-Maltempi PP (2012) Cytogenetic mapping of the W chromosome in the genus Leporinus (Teleostei, Anostomidae) using a highly repetitive DNA sequence. J Fish Biol 80:630–637. doi: 10.1111/j.1095-8649.2011.03199.x PubMedCrossRefGoogle Scholar
  30. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9CrossRefGoogle Scholar
  31. Noleto RB, Vicari MR, Cestari MM, Artoni RF (2012) Variable B chromosomes frequencies between males and females of two species of pufferfishes (Tetraodontiformes). Rev Fish Biol Fisheries 22:343–349. doi: 10.1007/s11160-011-9231-9 CrossRefGoogle Scholar
  32. Ohno S (1967) Sex Chromosomes and Sex-Linked Genes. Springer, BerlinCrossRefGoogle Scholar
  33. Oliveira C, Nirchio M, Granado A, Levy S (2003) Karyotypic characterization of Prochilodus mariae, Semaprochilodus kneri and Semaprochilodus laticeps (Teleostei: Prochilodontidae) from caicara del orinoco, Venezuela. Neotrop Ichthyol 1:47–52. doi: 10.1590/S1679-62252003000100005 CrossRefGoogle Scholar
  34. Oliver KR, Greene WK (2011) Mobile DNA and the TE-Thrust Hypothesis: supporting evidence from the primates. Mob DNA 2:8. doi: 10.1186/1759-8753-2-8 PubMedCrossRefGoogle Scholar
  35. Pauls E, Bertollo LAC (1990) Distribution of a supernumerary chromosome system and aspects of karyotypic evolution in the genus Prochilodus (Pisces, Prochilodontidae). Genetica 81:117–123. doi: 10.1007/BF00226450 CrossRefGoogle Scholar
  36. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938PubMedCrossRefGoogle Scholar
  37. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, vol I. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  38. Schemberger MO, Bellafronte E, Nogaroto V, Almeida MC, Schuhli GS, Artoni RF, Moreira-Filho O, Vicari MR (2011) Differentiation of repetitive DNA sites and sex chromosome systems reveal closely related group in Parodontidae (Actinopterygii: Characiformes). Genetica 139:1499–1508. doi: 10.1007/s10709-012-9649-6 PubMedCrossRefGoogle Scholar
  39. Skipper M (2007) Mysteries of heterochromatic sequences unravelled. Nat Rev Genet 8:567. doi: 10.1038/nrg2161 CrossRefGoogle Scholar
  40. Steinemann S, Steinemann M (2005) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143. doi: 10.1159/000084945 PubMedCrossRefGoogle Scholar
  41. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  42. Takehana Y, Naruse K, Asada Y, Matsuda Y, Shin-I T, Kohara Y, Fujiyama A, Hamaguchi S, Sakaizumi M (2012) Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromoatin of the W chromosomes of the medaka fishes. Chromosome Res 20:71–81. doi: 10.1007/s10577-011-9259-7 PubMedCrossRefGoogle Scholar
  43. Terencio ML, Schneider CH, Gross MC, Vicari MR, Feldberg E (2012) Stable karyotypes: a general rule for the fish of the family Prochilodontidae? Hydrobiologia 686:147–156. doi: 10.1007/s10750-012-1006-3 CrossRefGoogle Scholar
  44. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  45. Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, Bryan GL, Novák P, Macas J, Jiang J (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. Genes Genomes Genet 1:85–92. doi: 10.1534/g3.111.000125 Google Scholar
  46. Valente GT, Mazzuchelli J, Ferreira IA, Poletto AB, Fantinatti BEA, Martins C (2011) Cytogenetic mapping of the retroelements Rex1, Rex3 and Rex6 among cichlid fish: new insights on the chromosomal distribution of transposable elements. Cytogenet Genome Res 133:34–42. doi: 10.1159/000322888 PubMedCrossRefGoogle Scholar
  47. Venere PC, Miyazawa CS, Galetti-Jr PM (1999) New cases of supernumerary chromosomes in characiform fishes. Genet Mol Biol 22:345–349. doi: 10.1590/S1415-47572006000400008 CrossRefGoogle Scholar
  48. Vicari MR, Almeida MC, Bertollo LAC, Moreira-Filho O, Artoni RF (2006) Cytogenetic analysis and chromosomal characteristics of the polymorphic 18S rDNA in the fish Prochilodus lineatus (Characiformes, Prochilodontidae). Genet Mol Biol 4:621–625. doi: 10.1590/S1415-47572006000400008 CrossRefGoogle Scholar
  49. Vicari MR, Nogaroto V, Noleto RB, Cestari MM, Cioffi MB, Almeida MC, Moreira-Filho O, Bertollo LAC, Artoni RF (2010) Satellite DNA and chromosomes in neotropical fishes: methods, applications and perspectives. J Fish Biol 76:1094–1116. doi: 10.1111/j.1095-8649.2010.02564.x PubMedCrossRefGoogle Scholar
  50. Volff JN, Korting C, Schartl M (2000) Multiple lineages of the non-LTR retrotransposons Rex1with varying success in invading fish genomes. Mol Biol Evol 17:1673–1684PubMedCrossRefGoogle Scholar
  51. Yoshida K, Terai Y, Mizoiri S, Aibara M, Nishihara H, Watanable M, Kuroiwa A, Hirai H, Hirai Y, Matsuda Y, Okada N (2011) B chromosomes have a functional effect on female sex determination in lake victoria cichlid fishes. PLoS Genet 7(8):e1002203. doi: 10.1371/journal.pgen.1002203 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Maria Leandra Terencio
    • 1
  • Carlos Henrique Schneider
    • 1
  • Maria Claudia Gross
    • 2
  • Viviane Nogaroto
    • 3
  • Mara Cristina de Almeida
    • 3
  • Roberto Ferreira Artoni
    • 3
  • Marcelo Ricardo Vicari
    • 3
  • Eliana Feldberg
    • 1
  1. 1.Laboratório de Genética AnimalInstituto Nacional de Pesquisas da AmazôniaPetrópolis, ManausBrazil
  2. 2.Laboratório de Citogenômica Animal, Departamento de Biologia, Instituto de Ciências BiológicasUniversidade Federal do AmazonasManausBrazil
  3. 3.Laboratório de Citogenética e Evolução, Departamento de Biologia EstruturalUniversidade Estadual de Ponta GrossaPonta GrossaBrazil

Personalised recommendations