Advertisement

Genetica

, Volume 140, Issue 7–9, pp 375–392 | Cite as

General survey of hAT transposon superfamily with highlight on hobo element in Drosophila

  • Véronique Ladevèze
  • Nicole Chaminade
  • Françoise Lemeunier
  • Georges Periquet
  • Sylvie Aulard
Article

Abstract

The hAT transposons, very abundant in all kingdoms, have a common evolutionary origin probably predating the plant-fungi-animal divergence. In this paper we present their general characteristics. Members of this superfamily belong to Class II transposable elements. hAT elements share transposase, short terminal inverted repeats and eight base-pairs duplication of genomic target. We focus on hAT elements in Drosophila, especially hobo. Its distribution, dynamics and impact on genome restructuring in laboratory strains as well as in natural populations are reported. Finally, the evolutionary history of hAT elements, their domestication and use as transgenic tools are discussed.

Keywords

Hobo hAT transposons Evolution Transgenic tools Horizontal transfer Domestication 

Abbreviations

EDGP

European Drosophila Genome Project

GD

Gonadal dystrophy

HT

Horizontal transfer

LINE

Long interspersed element

LTR

Long terminal repeat

ORF

Open reading frame

SINE

Short interspersed element

TE

Transposable element

TIR

Terminal inverted repeat

TPase

Transposase

TPE

Threonine, proline, glutamic acid

TSD

Target site duplication

V(D)J

Variable, diverse, joining

Notes

Acknowledgments

The authors wish to thank Christian Biémont for helpful comments and discussion. Thanks are also due to anonymous referees for their comments. This work was partially supported by grants from GDR 2157 and GDR 3047 (Centre National de la Recherche Scientifique).

References

  1. Agraval A, Eastman QM, Schatz DG (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744–751CrossRefGoogle Scholar
  2. Andolfatto P, Wall JD, Kreitman M (1999) Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics 153:1297–1311PubMedGoogle Scholar
  3. Arensburger P, Hice H, Zhou L, Smith RC, Tom AC, Wright JA, Knapp J, O’Brochta DA, Craig NL, Atkinson PW (2011) Phylogenetic and functional characterization of the hAT transposon superfamily. Genetics 188:45–57PubMedCrossRefGoogle Scholar
  4. Arkhipova IR, Meselson M (2005) Diverse DNA transposons in rotifers of the class Bdelloidea. Proc Natl Acad Sci USA 102:11781–11786PubMedCrossRefGoogle Scholar
  5. Ashburner M, Lemeunier F (1976) Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). I. Inversion polymorphisms in Drosophila melanogaster and Drosophila simulans. Proc R Soc Lond B 193:137–157PubMedCrossRefGoogle Scholar
  6. Atkinson PW, Warren WD, O’Brochta DA (1993) The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc Natl Acad Sci USA 90:9693–9697PubMedCrossRefGoogle Scholar
  7. Atkinson PW, Pinkerton AC, O’Brochta DA (2001) Genetic transformation systems in insects. Annu Rev Entomol 46:317–346PubMedCrossRefGoogle Scholar
  8. Aulard S, David JR, Lemeunier F (2002) Chromosomal inversion polymorphism in Afrotropical populations of Drosophila melanogaster. Genet Res 79:49–63PubMedCrossRefGoogle Scholar
  9. Aulard S, Vaudin P, Ladevèze V, Chaminade N, Périquet G, Lemeunier L (2004) Maintenance of a large pericentric inversion generated by the hobo transposable element in a transgenic line of Drosophila melanogaster. Heredity 92:151–155PubMedCrossRefGoogle Scholar
  10. Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Res 38:4207–4217PubMedCrossRefGoogle Scholar
  11. Baker B, Schell J, Lörz H, Fedoroff N (1986) Transposition of the maize controlling element “Activator” in tobacco. Proc Natl Acad Sci USA 83:4844–4848PubMedCrossRefGoogle Scholar
  12. Bartolomé C, Bello X, Maside X (2009) Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biol 10:R22. doi: 10.1186/gb-2009-10-2-r22 PubMedCrossRefGoogle Scholar
  13. Benjak A, Forneck A, Casacuberta JM (2008) Genome-wide analysis of the ‘‘cut-and-paste’’ transposons of grapevine. PLoS ONE 3(9):e3107. doi: 10.1371/journal.pone.0003107 PubMedCrossRefGoogle Scholar
  14. Biémont C, Vieira C (2005) What transposable elements tell us about genome organization and evolution: the case of Drosophila. Cytogenet Genome Res 110:25–34PubMedCrossRefGoogle Scholar
  15. Biessmann H, Valgeirsdottir K, Lofsky A, Chin C, Ginther B, Levis RW, Pardue ML (1992) HeT-A, a transposable element specifically involved in “healing” broken chromosome ends in Drosophila melanogaster. Mol Cell Biol 12:3910–3918Google Scholar
  16. Bigot Y, Augé-Gouillou C, Periquet G (1996) Computer analyses reveal a hobo-like element in the nematode Caenorhabditis elegans, which presents a conserved transposase domain common with the Tc1-Mariner transposon family. Gene 174:265–271PubMedCrossRefGoogle Scholar
  17. Blackman RK, Grimalia R, Koehler MM, Gelbart WM (1987) Mobilization of hobo elements residing within the decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49:497–505PubMedCrossRefGoogle Scholar
  18. Blackman RK, Koehler MM, Grimalia R, Gelbart WM (1989) Identification of a fully-functional hobo transposable element and its use for germ-line transformation of Drosophila. EMBO J 8:211–217PubMedGoogle Scholar
  19. Bonnivard E, Bazin C, Denis B, Higuet D (2000) A scenario for the hobo transposable element invasion, deduced from the structure of natural populations of Drosophila melanogaster using tandem TPE repeats. Genet Res 75:13–23PubMedCrossRefGoogle Scholar
  20. Bonnivard E, Bazin C, Higuet D (2002) High polymorphism of TPE repeats within natural populations of Drosophila melanogaster: a gradient of the 5TPE hobo element in Western Europe. Mol Biol Evol 19:2277–2284PubMedCrossRefGoogle Scholar
  21. Boussy IA, Daniels SB (1991) hobo transposable elements in Drosophila melanogaster and D. simulans. Genet Res 58:27–34PubMedCrossRefGoogle Scholar
  22. Boussy IA, Itoh M (2004) Wanderings of hobo: a transposon in Drosophila melanogaster and its close relatives. Genetica 120:125–136PubMedCrossRefGoogle Scholar
  23. Bucheton A, Lavige J-M, Picard G, L’Héritier E (1976) Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36:305–314PubMedCrossRefGoogle Scholar
  24. Bundock P, Hooykaas P (2005) An Arabidopsis hAT-like transposase is essential for plant development. Nature 436:282–284PubMedCrossRefGoogle Scholar
  25. Butter F, Kappei D, Buchholz F, Vermeulen M, Mann M (2010) A domesticated transposon mediates the effects of a single-nucleotide polymorphism responsible for enhanced muscle growth. EMBO Rep 11:305–311PubMedCrossRefGoogle Scholar
  26. Cáceres M, Ranz JM, Barbadilla A, Long M, Ruiz A (1999) Generation of a widespread Drosophila inversion by a transposable element. Science 285:415–418PubMedCrossRefGoogle Scholar
  27. Calvi BR, Gelbart WM (1994) The basis for germline specificity of the hobo transposable element in Drosophila melanogaster. EMBO J 13:1636–1644PubMedGoogle Scholar
  28. Calvi BR, Hong TJ, Findley SD, Gelbart WM (1991) Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66:465–471PubMedCrossRefGoogle Scholar
  29. Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106PubMedCrossRefGoogle Scholar
  30. Casals F, Cáceres M, Ruiz A (2003) The foldback-like transposon Galileo is involved in the generation of two different natural chromosomal inversions of Drosophila buzzatii. Mol Biol Evol 20:674–685PubMedCrossRefGoogle Scholar
  31. Chuck G, Robbins T, Nijjar C, Ralston E, Courtney-Gutterson N, Dooner HK (1993) Tagging and cloning of a petunia flower color gene with the maize transposable element Activator. Plant Cell 5:371–378PubMedGoogle Scholar
  32. Collins RA, Saville BJ (1990) Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature 345:177–179PubMedCrossRefGoogle Scholar
  33. Coyne JA, Aulard S, Berry A (1991) Lack of underdominance in a naturally occurring pericentric inversion in Drosophila melanogaster and its implications for chromosome evolution. Genetics 129:791–802PubMedGoogle Scholar
  34. Coyne JA, Meyers W, Crittenden AP, Sniegowski P (1993) The fertility effects of pericentric inversions in Drosophila melanogaster. Genetics 134:487–496PubMedGoogle Scholar
  35. Da Lage JL, Kergoat GJ, Maczkowiak F, Silvain JF, Cariou ML, Lachaise D (2007) A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J Zool Syst Evol Res 45:47–63CrossRefGoogle Scholar
  36. Daniels SB, Chovnick A, Boussy IA (1990) Distribution of hobo transposable elements in the genus Drosophila. Mol Biol Evol 7:589–606PubMedGoogle Scholar
  37. Danilevskaya ON, Slot F, Pavlova M, Pardue ML (1994) Structure of the Drosophila HeT-A transposon: A retrotransposon-like element forming telomeres. Chromosoma 103:215–224PubMedCrossRefGoogle Scholar
  38. Danilevskaya ON, Tan C, Wong J, Alibhai M, Pardue ML (1998) Unusual features of the Drosophila melanogaster telomere transposable element HeT-A are conserved in Drosophila yakuba telomere elements. Proc Natl Acad Sci USA 95:3770–3775PubMedCrossRefGoogle Scholar
  39. de Freitas OrtizM, Loreto EL (2009) Characterization of new hAT transposable element in 12 Drosophila genomes. Genetica 135:67–75CrossRefGoogle Scholar
  40. de Freitas OrtizM, Lorenzatto KR, Corrêa BR, Loreto EL (2010) hAT transposable elements and their derivatives: an analysis in the 12 Drosophila genomes. Genetica 138:649–655CrossRefGoogle Scholar
  41. Delprat A, Negre B, Puig M, Ruiz A (2009) The transposon Galileo generates natural chromosomal inversions in Drosophila by ectopic recombination. PLoS ONE 4:e7883PubMedCrossRefGoogle Scholar
  42. Depra M, Panzera Y, Ludwig A, Valente VLS, Loreto ELS (2010) hosimary: a new hAT transposon group involved in horizontal transfer. Mol Genet Genomics 283:451–459PubMedCrossRefGoogle Scholar
  43. DeVault JD, Hughes KJ, Leopold RA, Johnson OA, Narang SK (1996) Gene transfer into corn earworm (Helicoverpa zea) embryos. Genome Res 6:571–579PubMedCrossRefGoogle Scholar
  44. Dooner HK, Belachew A (1989) Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122:447–457PubMedGoogle Scholar
  45. Dreyfus DH (1992) Evidence suggesting an evolutionary relationship between transposable elements and immune system recombination sequences. Mol Immunol 29:807–810PubMedCrossRefGoogle Scholar
  46. Eggleston WB, Rim NR, Lim JK (1996) Molecular characterization of hobo-mediated inversions in Drosophila melanogaster. Genetics 144:647–656PubMedGoogle Scholar
  47. Eickbush T, Eickbush D (2005) Transposable elements: evolution. Encyclopedia of life sciences. John Wiley and Sons Ltd, USA. doi: 10.1038/npg.els.0005130 Google Scholar
  48. Emelyanov A, Gao Y, Naqvi NI, Parinov S (2006) Trans-kingdom transposition of the maize dissociation element. Genetics 174:1095–1104PubMedCrossRefGoogle Scholar
  49. Esposito E, Gianfrancesco F, Ciccodicola A, Montanini L, Mumm S, D’Urso M, Forabosco A (1999) A novel pseudoautosomal human gene encodes a putative protein similar to Ac-like transposases. Hum Mol Genet 8:61–67PubMedCrossRefGoogle Scholar
  50. Essers L, Kunze R (1995) Transposable elements Bg (Zea mays) and Tag1 (Arabidopsis thaliana) encode protein sequences with homology to Ac like transposases. Maize Genet Coop Newsl 69:38–41Google Scholar
  51. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedCrossRefGoogle Scholar
  52. Feschotte C, Pritham EJ (2007) DNA Transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368PubMedCrossRefGoogle Scholar
  53. Finnegan DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107PubMedCrossRefGoogle Scholar
  54. Fouvry L, Ogereau D, Berger A, Gavory F, Montchamp-Moreau C (2011) Sequence analysis of the segmental duplication responsible for Paris sex-ratio drive in Drosophila simulans. Genes Genomes Genet (Bethesda) 1:401–410Google Scholar
  55. Fowler TJ, Mitton MF (2000) Scooter, a new active transposon in Schizophyllum commune, has disrupted two genes regulating signal transduction. Genetics 156:1585–1594PubMedGoogle Scholar
  56. Galindo MI, Bigot Y, Sánchez MD, Periquet G, Pascual L (2001) Sequences homologous to the hobo transposable element in E strains of Drosophila melanogaster. Mol Biol Evol 18:1532–1539PubMedCrossRefGoogle Scholar
  57. Gardner MJ, Hall N, Fung E, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511PubMedCrossRefGoogle Scholar
  58. Gelbart WM, Blackman RK (1989) The hobo element of Drosophila melanogaster. Prog Nucleic Acid Res Mol Biol 36:37–46PubMedCrossRefGoogle Scholar
  59. Gentles AJ, Wakefield MJ, Kohany O, Gu W, Batzer MA, Pollock DD, Jurka J (2007) Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Res 17:992–1004PubMedCrossRefGoogle Scholar
  60. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521PubMedCrossRefGoogle Scholar
  61. Gilbert C, Schaack S, Pace JK, Brindley PJ, Feschotte C (2010) A role for host–parasite interactions in the horizontal transfer of transposons across phyla. Nature 464:1347–1350PubMedCrossRefGoogle Scholar
  62. Gilbert C, Hernandez SS, Benabib JF, Smith EN, Feschotte C (2012) Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol 29:503–515PubMedCrossRefGoogle Scholar
  63. Gray YHM (2000) It takes two transposons to tango: transposable-element-mediated chromosomal rearrangements. TIG 16:461–468PubMedCrossRefGoogle Scholar
  64. Handler AM, Gomez SP (1995) The hobo transposable element has transposase-dependent and -independent excision activity in drosophilid species. Mol Gen Genet 247:399–408PubMedCrossRefGoogle Scholar
  65. Handler AM, Gomez SP (1996) The hobo transposable element excises and has related elements in tephritid species. Genetics 143:1339–1347PubMedGoogle Scholar
  66. Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358PubMedCrossRefGoogle Scholar
  67. Hehl R, Nacken WK, Krause A, Saedler H, Sommer H (1991) Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol Biol 16:369–371PubMedCrossRefGoogle Scholar
  68. Hickman AB, Perez ZN, Zhou L, Musingarimi P, Ghirlando R, Hinshaw JE, Craig NL, Dyda F (2005) Molecular architecture of a eukaryotic DNA transposase. Nat Struct Mol Biol 12:715–721PubMedCrossRefGoogle Scholar
  69. Hikosaka A, Koga A (2007) PCR detection of excision suggests mobility of the medaka fish Tol1 transposable element in the frog Xenopus laevis. Genet Res 89:201–206PubMedCrossRefGoogle Scholar
  70. Hiom K, Melek M, Gellert M (1998) DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470PubMedCrossRefGoogle Scholar
  71. Kaminker JS, Bergman CM, Kronmiller B et al. (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. http://genomebiology.com/2002/3/12/research/0084
  72. Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci USA 100:6569–6574PubMedCrossRefGoogle Scholar
  73. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLoS Biol 3:e181PubMedCrossRefGoogle Scholar
  74. Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7PubMedCrossRefGoogle Scholar
  75. Kawakami K, Noda T (2004) Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166:895–899PubMedCrossRefGoogle Scholar
  76. Kawakami K, Shima A (1999) Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240:239–244PubMedCrossRefGoogle Scholar
  77. Kawakami K, Koga A, Hori H, Shima A (1998) Excision of the Tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225:17–22PubMedCrossRefGoogle Scholar
  78. Kawakami K, Imanaka K, Itoh M, Taira M (2004) Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338:93–98PubMedCrossRefGoogle Scholar
  79. Kempken F (1995) Horizontal transfer of a mitochondrial plasmid. Mol Gen Genet 248:89–94PubMedCrossRefGoogle Scholar
  80. Kempken F, Kück U (1996) Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol 16:6563–6572Google Scholar
  81. Kempken F, Kück U (1998) Evidence for circular transposition derivatives from the fungal hAT-transposon Restless. Curr Genet 34:200–203PubMedCrossRefGoogle Scholar
  82. Kempken F, Windhofer F (2001) The hAT family: a versatile transposon group common to plants, fungi, animals, and man. Chromosoma 110:1–9PubMedCrossRefGoogle Scholar
  83. Kermicle JL, Alleman M, Dellaporta SD (1989) Sequential mutagenesis of a maize gene, using the transposable element dissociation. Genome 31:712–716CrossRefGoogle Scholar
  84. Kidwell MG (1984) Hybrid dysgenesis in Drosophila melanogaster: partial sterility associated with embryo lethality in the P-M system. Genet Res 44:11–28PubMedCrossRefGoogle Scholar
  85. Kidwell MG (1992) Horizontal transfer of P elements and other short inverted repeat transposons. Genetica 86:275–286PubMedCrossRefGoogle Scholar
  86. Kidwell MG (1993) Lateral transfer in natural populations of eukaryotes. Annu Rev Genet 27:235–256PubMedCrossRefGoogle Scholar
  87. Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24PubMedGoogle Scholar
  88. Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833PubMedGoogle Scholar
  89. Kikuno K, Tanaka K, Itoh M, Tanaka Y, Boussy IA, Gamo S (2006) Patterns of hobo elements and their effects in natural populations of Drosophila melanogaster in Japan. Heredity 96:426–433PubMedCrossRefGoogle Scholar
  90. Kim JM, Kim W (1996) Hybrid dysgenesis and distribution of hobo elements in Korean populations of Drosophila melanogaster. Korean J Genet 18:83–92Google Scholar
  91. Kim JM, Kim W (1999) Identification of a full-size hobo element and deletion derivatives in Korean populations of Drosophila melanogaster. Mol Cells 9:127–132PubMedGoogle Scholar
  92. Kim YJ, Hice RH, O’Brochta DA, Atkinson PW (2011) DNA sequence requirements for hobo transposable element transposition in Drosophila melanogaster. Genetica 139:985–997PubMedCrossRefGoogle Scholar
  93. Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145PubMedCrossRefGoogle Scholar
  94. Kodama K, Takagi S, Koga A (2008) The Tol1 element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans. Heredity 101:222–227PubMedCrossRefGoogle Scholar
  95. Koga A, Inagaki H, Bessho Y, Hori H (1995) Insertion of a novel transposable element in the tyrosinase gene is responsible for an albino mutation in the medaka fish, Oryzias latipes. Mol Gen Genet 249:400–405PubMedCrossRefGoogle Scholar
  96. Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H (1996) Transposable element in fish. Nature 383:30PubMedCrossRefGoogle Scholar
  97. Koga A, Shimada A, Shima A, Sakaizumi M, Tachida H, Hori H (2000) Evidence for recent invasion of the medaka fish genome by the Tol2 transposable element. Genetics 155:273–281PubMedGoogle Scholar
  98. Koga A, Higashide I, Hori H, Wakamatsu Y, Kyono-Hamaguchi Y, Hamaguchi S (2007a) The Tol1 element of medaka fish is transposed with only terminal regions and can deliver large DNA fragments into the chromosomes. J Hum Genet 52:1026–1030PubMedCrossRefGoogle Scholar
  99. Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007b) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635PubMedCrossRefGoogle Scholar
  100. Kusakabe S, Harada K, Mukai T (1990) The rare inversion with a P element at the breakpoint maintained in a natural population of Drosophila melanogaster. Genetica 82:111–115PubMedCrossRefGoogle Scholar
  101. Ladevèze V, Galindo MI, Pascual L, Periquet G, Lemeunier L (1994) Invasion of the hobo transposable element studied by in situ hybridization on polytene chromosomes of Drosophila melanogaster. Genetica 93:91–100PubMedCrossRefGoogle Scholar
  102. Ladevèze V, Galindo MI, Chaminade N, Pascual L, Periquet G, Lemeunier F (1998a) Transmission pattern of hobo transposable element in transgenic lines of Drosophila melanogaster. Genet Res 71:97–107PubMedCrossRefGoogle Scholar
  103. Ladevèze V, Aulard S, Chaminade N, Periquet G, Lemeunier F (1998b) Hobo transposons causing chromosomal breakpoints. Proc R Soc Lond B 265:1157–1159CrossRefGoogle Scholar
  104. Ladevèze V, Aulard S, Chaminade N, Biémont C, Periquet G, Lemeunier F (2001) Dynamics of the hobo transposable element in transgenic lines of Drosophila melanogaster. Genet Res 77:135–142PubMedCrossRefGoogle Scholar
  105. Lam WL, Lee TS, Gilbert W (1996) Active transposition in zebrafish. Proc Natl Acad Sci USA 93:10870–10875PubMedCrossRefGoogle Scholar
  106. Lander ES, Linton LM, Birren B et al (2001) International human genome sequencing consortium, initial sequencing and analysis of the human genome. Nature 409:860–921PubMedCrossRefGoogle Scholar
  107. Le Rouzic A, Capy P (2005) The first steps of transposable elements invasion: parasitic strategy vs. genetic drift. Genetics 169:1033–1043PubMedCrossRefGoogle Scholar
  108. Le Rouzic A, Boutin TS, Capy P (2007) Long-term evolution of transposable elements. Proc Natl Acad Sci USA 104:19375–19380PubMedCrossRefGoogle Scholar
  109. Lemeunier F, Aulard S (1992) Inversion polymorphism in Drosophila melanogaster. In: Krimbas CB, Powell JT (eds) Inversion polymorphism in Drosophila. CRC Press, Boca Raton, pp 339–405Google Scholar
  110. Lim JK (1979) Sites-specific instability in Drosophila melanogaster: the origin of mutation and cytogenetic evidence for site specificity. Genetics 93:681–701PubMedGoogle Scholar
  111. Lim JK (1988) Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc Natl Acad Sci USA 85:9153–9157PubMedCrossRefGoogle Scholar
  112. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819PubMedCrossRefGoogle Scholar
  113. Lohe AR, Moriyama EN, Lidholm DA, Hartl DL (1995) Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements. Mol Biol Evol 12:62–72PubMedCrossRefGoogle Scholar
  114. Long M, Betrán E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875PubMedCrossRefGoogle Scholar
  115. Loreto ELS, da Silva LB, Zaha A, Valente VL (1997) Distribution of transposable elements in neotropical species of Drosophila. Genetica 101:153–165PubMedCrossRefGoogle Scholar
  116. Loreto ELS, Zaha A, Valente VL (1998) Transposable element in South American populations of D. simulans. Genet Sel Evol 30:171–180CrossRefGoogle Scholar
  117. Loreto ELS, Carareto CMA, Capy P (2008) Revisiting horizontal transfer of transposable elements in Drosophila. Heredity 100:545–554PubMedCrossRefGoogle Scholar
  118. Lozovskaya ER, Nurminsky DI, Hartl DL, Sullivan DT (1996) Germline transformation of Drosophila virilis mediated by the transposable element hobo. Genetics 142:173–177PubMedGoogle Scholar
  119. Lyttle TW, Haymer DS (1992) The role of the transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86:113–126PubMedCrossRefGoogle Scholar
  120. Markljung E, Jiang L, Jaffe JD, Mikkelsen TS, Wallerman O, Larhammar M, Zhang X, Wang L, Saenz-Vash V, Gnirke An Lindroth AM, Barres R, Yan J, Stromberg S, De S, Ponten F, Lander AS, Carr SA, Zierath JR, Kullander K, Wadekius C, Linblad-Toh K, Anderson G, Hjalm G, Anderson L (2009) ZBED6, a novel transcription factor derived from a domesticated DNA transposons regulates IGF2 expression and muscle growth. PLoS Biol 7:e10000256CrossRefGoogle Scholar
  121. Marzo M, Puig M, Ruiz A (2008) The Foldback-like element Galileo belongs to the P superfamily of DNA transposons and is widespread within the Drosophila genus. Proc Natl Acad Sci USA 105:2957–2962PubMedCrossRefGoogle Scholar
  122. Matzkin LM, Merritt TJS, Zhu CT, Eanes WF (2005) The structure and population genetics of the breakpoints associated with the cosmopolitan chromosomal inversion In(3R)Payne in Drosophila melanogaster. Genetics 170:1143–1152PubMedCrossRefGoogle Scholar
  123. McClintock B (1947) Cytogenetic studies of maize and Neurospora. Carnegie Inst Wash Year Book 46:146–152Google Scholar
  124. McClintock B (1948) Mutable loci in maize. Carnegie Inst Wash Year Book 47:155–169Google Scholar
  125. McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599PubMedGoogle Scholar
  126. McGinnis W, Shermoen AW, Beckendorf SK (1983) A transposable element inserted just 5’ to a Drosophila glue protein gene alters gene expression and chromatin structure. Cell 34:75–84PubMedCrossRefGoogle Scholar
  127. Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, Garber M et al (2007) Genome of the marsupial Monodelphis domestica reveals innovation in noncoding sequences. Nature 447:167–177PubMedCrossRefGoogle Scholar
  128. Miller WJ, McDonald JF, Pinsker W (1997) Molecular domestication of mobile elements. Genetica 100:261–270PubMedCrossRefGoogle Scholar
  129. Muehlbauer GJ, Bhau BS, Syed NH, Heinen S, Cho S, Marshall D, Pateyron S, Buisine N, Chalhoub B, Flavell AJ (2006) A hAT superfamily transposase recruited by the cereal grass genome. Mol Genet Genomics 275:553–563PubMedCrossRefGoogle Scholar
  130. Newfeld SJ, Takaesu NT (1999) Local transposition of a hobo element within the decapentaplegic locus of Drosophila. Genetics 151:177–187PubMedGoogle Scholar
  131. O’Brochta DA, Stosic CD, Pilitt K, Subramanian RA, Hice RH, Atkinson PW (2009) Transpositionally active episomal hAT elements. BMC Mol Biol 10:108PubMedCrossRefGoogle Scholar
  132. O’Brochta DA, Atkinson PW (1996) Transposable elements and gene transformation in non-Drosophilid insects. Insect Biochem Molec Biol 26:739–753CrossRefGoogle Scholar
  133. O’Brochta DA, Atkinson PW (2004) Transformation systems in insects. Methods Mol Biol 260:227–254PubMedGoogle Scholar
  134. O’Brochta DA, Warren WD, Saville KJ, Atkinson PW (1994) Interplasmid transposition of Drosophila hobo elements in non-drosophilid insects. Mol Gen Genet 244:9–14PubMedCrossRefGoogle Scholar
  135. Pace JK, Feschotte C (2007) The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 17:422–432PubMedCrossRefGoogle Scholar
  136. Pace JK, Gilbert C, Clark MS, Feschotte C (2008) Repeated horizontal transfer of a DNA transposons in mammals and other tetrapods. Proc Natl Acad Sci USA 105:17023–17028PubMedCrossRefGoogle Scholar
  137. Pascual L, Periquet G (1991) Distribution of hobo transposable elements in natural populations of Drosophila melanogaster. Mol Biol Evol 8:282–296PubMedGoogle Scholar
  138. Periquet G, Hamelin MH, Bigot Y, Kai H (1989a) Presence of the deleted hobo element Th in Eurasian populations of Drosophila melanogaster. Genet Sel Evol 21:107–111CrossRefGoogle Scholar
  139. Periquet G, Hamelin MH, Bigot Y, Lepissier A (1989b) Geographical and historical patterns of distribution of hobo elements in Drosophila melanogaster populations. J Evol Biol 2:223–229CrossRefGoogle Scholar
  140. Periquet G, Hamelin MH, Kalmes R, Eeken J (1990) Hobo elements and their deletion-derivative sequences in Drosophila melanogaster and its sibling species D. simulans, D. mauritiana and D. sechellia. Genet Sel Evol 22:393–402CrossRefGoogle Scholar
  141. Periquet G, Lemeunier F, Bigot Y, Hamelin MH, Bazin C, Ladevèze V, Eeken J, Galindo MI, Pascual L, Boussy I (1994) The evolutionary genetics of the hobo transposable element in the Drosophila melanogaster complex. Genetica 93:79–90PubMedCrossRefGoogle Scholar
  142. Peterson PW, Yoder JI (1995) Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome 38:265–276PubMedCrossRefGoogle Scholar
  143. Pimpinelli S, Berloco M, Fanti L, Dimitri P, Bonaccorsi S, Marchetti E, Caizzi R, Caggese C, Gatti M (1995) Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. Proc Natl Acad Sci USA 92:3804–3808PubMedCrossRefGoogle Scholar
  144. Pinkerton AC, O’Brochta DA, Atkinson PW (1996) Mobility of hAT transposable elements in the Old World bollworm, Helicoverpa armigera. Insect Mol Biol 5:223–227PubMedCrossRefGoogle Scholar
  145. Pinsker W, Haring E, Hagemann S, Miller WJ (2001) The evolutionary life history of P transposons: from horizontal invaders to domesticated neogenes. Chromosoma 110:148–158PubMedCrossRefGoogle Scholar
  146. Plasterk R (1998) V(D)J recombination: ragtime jumping. Nature 394:718–719PubMedCrossRefGoogle Scholar
  147. Pritham EJ, Feschotte C (2007) Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus. Proc Natl Acad Sci USA 104:1895–1900PubMedCrossRefGoogle Scholar
  148. Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM (2007) Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 5:e152PubMedCrossRefGoogle Scholar
  149. Ray DA, Pagan HJT, Thompson ML, Stevens RD (2007) Bats with hATs: evidence for recent DNA transposon activity in genus Myotis. Mol Biol Evol 24:632–639PubMedCrossRefGoogle Scholar
  150. Ray DA, Feschotte C, Pagan HJT, Smith JD, Pritham EJ, Arensburger P, Atkinson PW, Craig NL (2008) Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res 18:717–728PubMedCrossRefGoogle Scholar
  151. Rubin E, Lithwick G, Levy AA (2001) Structure and evolution of the hAT transposon superfamily. Genetics 158:949–957PubMedGoogle Scholar
  152. Sanchez-Gracia A, Maside X, Charlesworth B (2005) High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet 21:200–203PubMedCrossRefGoogle Scholar
  153. Sheen F, Lim JK, Simmons MJ (1993) Genetic instability in Drosophila melanogaster mediated by hobo transposable elements. Genetics 133:315–334PubMedGoogle Scholar
  154. Silva JC, Kidwell MG (2000) Horizontal transfer and selection in the evolution of P elements. Mol Biol Evol 17:1542–1557PubMedCrossRefGoogle Scholar
  155. Simmons GM (1992) Horizontal transfer of hobo transposable elements within the Drosophila melanogaster species complex: evidence from DNA sequencing. Mol Biol Evol 9:1050–1060PubMedGoogle Scholar
  156. Simmons GM, Plummer D, Simon A, Boussy IA, Frantsve J, Itoh M (1998) Horizontal and vertical transmission of hobo-related sequences between Drosophila melanogaster and Drosophila simulans. In: Syvanen M, Kado CI (eds) Horizontal Gene transfer. Chapman and Hall, New York, pp 285–294Google Scholar
  157. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285PubMedCrossRefGoogle Scholar
  158. Sorsa V (1998) Chromosome maps of Drosophila. vol 2. CRC Press, Boca RatonGoogle Scholar
  159. Souames S, Bonnivard E, Bazin C, Higuet D (2003a) High mutation rate of TPE repeats: a microsatellite in the putative transposase of the hobo element in Drosophila melanogaster. Mol Biol Evol 20:1826–1832PubMedCrossRefGoogle Scholar
  160. Souames S, Bazin C, Bonnivard E, Higuet D (2003b) Behavior of the hobo transposable element with regard to TPE repeats in transgenic lines of Drosophila melanogaster. Mol Biol Evol 20:2055–2066PubMedCrossRefGoogle Scholar
  161. Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218:341–347PubMedCrossRefGoogle Scholar
  162. Streck RD, Macgaffey JE, Beckendorf SK (1986) The structure of hobo transposable elements and their insertion sites. EMBO J 5:3615–3623PubMedGoogle Scholar
  163. Subramanian RA, Arensburger P, Atkinson PW, O’Brochta DA (2007) Transposable element dynamics of the hAT element Herves in the human malaria vector Anopheles gambiae s.s. Genetics 176:2477–2487PubMedCrossRefGoogle Scholar
  164. Torres FP, Fonte LF, Valente VL, Loreto EL (2006) Mobilization of a hobo-related sequence in the genome of Drosophila simulans. Genetica 126:101–110PubMedCrossRefGoogle Scholar
  165. Torti C, Malacrida AR, Yannopoulos G, Louis C, Gasperi G (1994) Hybrid dysgenesis-like phenomena in the medfly, Ceratitis capitata (Diptera, Tephritidae). J Hered 85:92–99Google Scholar
  166. Torti C, Gomulski LM, Bonizzoni M, Murelli V, Moralli D, Guglielmino CR, Raimondi E, Crisafulli D, Capy P, Gasperi G, Malacrida AR (2005) Cchobo, a hobo-related sequence in Ceratitis capitata. Genetica 123:313–325PubMedCrossRefGoogle Scholar
  167. Tsutsumi M, Imai S, Kyono-Hamaguchi Y, Hamaguchi S, Koga A, Hori H (2006) Color reversion of the albino medaka fish associated with spontaneous somatic excision of the Tol-1 transposable element from the tyrosinase gene. Pigment Cell Res 19:243–247PubMedCrossRefGoogle Scholar
  168. Volff JN (2006) Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922PubMedCrossRefGoogle Scholar
  169. Volff JN (2010) Tame affairs: domesticated transposase and domestic pigs. EMBO Rep 11:241–242PubMedCrossRefGoogle Scholar
  170. Vollbrecht E, Duvick J, Schares JP et al (2010) Genome-wide distribution of transposed Dissociation elements in maize. Plant Cell 22:1667–1685PubMedCrossRefGoogle Scholar
  171. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562PubMedCrossRefGoogle Scholar
  172. Weil CF, Kunze R (2000) Transposition of maize Ac/Ds transposable elements in the yeast Saccharomyces cerevisiae. Nat Genet 26:187–190PubMedCrossRefGoogle Scholar
  173. Wesley CS, Eanes WF (1994) Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci USA 91:3132–3136PubMedCrossRefGoogle Scholar
  174. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nature Rev Genetics 8:973–982CrossRefGoogle Scholar
  175. Woodruff RC, Thompson JN (2003) Transposons as natural and experimental mutagens. Encyclopedia of life sciences. John Wiley and Sons, Ltd, USA. doi: 10.1038/npg.els.0000841 Google Scholar
  176. Yamashita D, Komori H, Higuchi Y, Yamaguchi T, Osumi T, Hirose F (2007) Human DNA replication-related element binding factor (hDREF) self-association via hATC domain is necessary for its nuclear accumulation and DNA binding. J Biol Chem 282:7563–7575PubMedCrossRefGoogle Scholar
  177. Yannopoulos G, Stamatis N, Monastirioti M, Hatzopoulos P, Louis C (1987) hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5MRF. Cell 49:487–495PubMedCrossRefGoogle Scholar
  178. Yannopoulos G, Zabalou G, Alahiotis SN (1994) Distribution of P and hobo mobile elements in environmentally manipulated long-term Drosophila melanogaster cage populations. Hereditas 121:87–102PubMedCrossRefGoogle Scholar
  179. Yuan Y-W, Wessler SR (2011) The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci USA 108:7884–7889PubMedCrossRefGoogle Scholar
  180. Zabalou S, Alahiotis SN, Yannopoulos G (1991) Seasonal analysis of 23.5 MRF (hobo) and P-M hybrid dysgenesis determinants in a Greek natural population of Drosophila melanogaster. Hereditas 114:1–13PubMedCrossRefGoogle Scholar
  181. Zabalou S, Alahiotis SN, Yannopoulos G (1994) A three-season comparative analysis of the chromosomal distribution of P and hobo mobile element in a natural population of Drosophila melanogaster. Hereditas 120:127–140PubMedCrossRefGoogle Scholar
  182. Zakharenko LP, Gracheva EM, Romanova OA, Zakharov IK, Voloshina MA, Kochieva EZ, Simonova OB, Golubovsky MD, Georgiev P (2000) hobo-induced rearrangements are responsible for mutation bursts at the yellow locus in a natural population of Drosophila melanogaster. Mol Gen Genet 263:335–341PubMedCrossRefGoogle Scholar
  183. Zakharenko LP, Kovalenko LV, Mai S (2007) Fluorescence in situ hybridization analysis of hobo, mdg1 and Dm412 transposable elements reveals genomic instability following the Drosophila melanogaster genome sequencing. Heredity 99:525–530PubMedCrossRefGoogle Scholar
  184. Zhang J, Zhang F, Peterson T (2006) Transposition of reversed Ac element ends generates novel chimeric genes in maize. PLoS Genet 2:e164PubMedCrossRefGoogle Scholar
  185. Zhang J, Yu C, Pulletikurti V, Lamb J, Danilova T, Weber DF, Birchler J, Peterson T (2009) Alternative Ac/Ds transposition induces major chromosomal rearrangements in maize. Genes Dev 23:755–765PubMedCrossRefGoogle Scholar
  186. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL (2004) Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Véronique Ladevèze
    • 1
  • Nicole Chaminade
    • 2
    • 3
  • Françoise Lemeunier
    • 2
    • 3
  • Georges Periquet
    • 4
  • Sylvie Aulard
    • 2
    • 3
    • 5
  1. 1.UMR 6187 CNRS, Institut de Physiologie et Biologie CellulairesUniversité de PoitiersPoitiers CedexFrance
  2. 2.Laboratoire Evolution, Génomes et SpéciationUPR 9034 CNRSGif-sur-Yvette CedexFrance
  3. 3.Université Paris-SudOrsay CedexFrance
  4. 4.UMR CNRS 7261Faculté des Sciences et Techniques, Institut de Recherche sur la Biologie de l’InsecteToursFrance
  5. 5.Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations