, Volume 139, Issue 11–12, pp 1487–1497 | Cite as

The role of vertical and horizontal transfer in the evolution of Paris-like elements in drosophilid species

  • Gabriel Luz Wallau
  • Valéria Lima Kaminski
  • Elgion L. S. Loreto


The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5′ and 3′ boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185 bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.


Paris-like Transposable element Drosophila Inverted terminal repeat Vertical transmission Horizontal transfer 



This study was supported by research grants and fellowships from CAPES, CNPq (304205/2007/9) and PRONEX-FAPERGS (10/0028-7). We are grateful to João Pedro Junges dos Santos for help in Drosophila strains identification.

Supplementary material

10709_2012_9648_MOESM1_ESM.doc (14 kb)
Supplementary material 1 (DOC 14 kb)
10709_2012_9648_MOESM2_ESM.doc (101 kb)
Supplementary material 2 (DOC 101 kb)
10709_2012_9648_MOESM3_ESM.xls (14 kb)
Supplementary material 3 (XLS 14 kb)
10709_2012_9648_MOESM4_ESM.xls (24 kb)
Supplementary material 4 (XLS 24 kb)


  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinforma 21:2104–2105. doi: 10.1093/bioinformatics/bti263 CrossRefGoogle Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi: 10.1109/TAC.1974.1100705 CrossRefGoogle Scholar
  3. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 PubMedGoogle Scholar
  4. Arkhipova IR (2001) Transposable elements in the animal kingdom. Mol Biol 35:157–167. doi: 10.1023/A:1010485915642 CrossRefGoogle Scholar
  5. Avancini RMP, Walden KKO, Robertson HM (1996) The genomes of most animals have multiple members of the Tc1 family of transposable elements. Genetica 98:131–140. doi: 10.1007/BF00121361 PubMedCrossRefGoogle Scholar
  6. Aziz RK, Breitbart M, Edwards RA (2010) Transposases are the most abundant, most ubiquitous genes in nature. Nucl Acids Res 38(13):4207–4217. doi: 10.1093/nar/gkq140 PubMedCrossRefGoogle Scholar
  7. Biémont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524. doi: 10.1038/443521a PubMedCrossRefGoogle Scholar
  8. Brillet B, Bigot Y, Augé-Gouillou C (2007) Assembly of the Tc1 and mariner transposition initiation complexes depends on the origins of their transposase DNA binding domains. Genetica 130:105–120. doi: 10.1007/s10709-006-0025-2 PubMedCrossRefGoogle Scholar
  9. Casals F, Cáceres M, Manfrin MH, Gonzáles J, Ruiz A (2005) Molecular characterization and chromosomal distribution of Galileo, Kepler and Newton, three foldback transposable elements of the Drosophila buzzati species complex. Genetics 169(4):2047–2059. doi: 10.1534/genetics.104.035048 PubMedCrossRefGoogle Scholar
  10. Casse N, Bui Q, Nicolas V, Renault S, Bigot Y (2006) Species sympathy and horizontal transfers of Mariner transposons in marine crustacean genomes. Mol Phyl Evol 40(2):609–619. doi: 10.1016/j.ympev.2006.02.005 CrossRefGoogle Scholar
  11. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Gen Res 14:1188–1190. doi: 10.1101/gr.849004 CrossRefGoogle Scholar
  12. Cui Z, Geurts AM, Liu G, Kaufman CD, Hackett PB (2002) Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon. J Mol Biol 318:1221–1235. doi: 10.1016/S0022-2836(02)00237-1 PubMedCrossRefGoogle Scholar
  13. De Oliveira LFV, Wallau GL, Loreto ELS (2009) Isolation of high quality DNA: a protocol combining “rennet” and glass milk. Electron J Biotechnol 12(2):1–6. doi: 10.2225/vol12-issue2-fulltext-4 Google Scholar
  14. Dodd IB, Egan JB (1990) Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Res 18:5019–5026. doi: 10.1093/nar/18.17.5019 PubMedCrossRefGoogle Scholar
  15. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila Phylogeny. Nature 450:203–218. doi: 10.1038/nature06341 CrossRefGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi: 10.1093/nar/gkh340
  17. Feschotte C, Pritham E (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368. doi: 10.1146/annurev.genet.40.110405.090448 PubMedCrossRefGoogle Scholar
  18. Fischer SE, van Luenen HG, Plasterk RH (1999) Cis requirement for transposition fo Tc1-like transposon in C. elegans. Mol Gen Genet 262:268–274PubMedGoogle Scholar
  19. Granzotto A, Lopes FR, Lerat E, Vieira C, Carareto CMA (2009) The evolutionary dynamics of the Helena retro transposon revealed by sequenced Drosophila genomes. BMC Evol Biol 9(1):174. doi: 10.1186/1471-2148-9-174 PubMedCrossRefGoogle Scholar
  20. Hua-Van A, Le Rouzic A, Boutin TS, Filee J, Capy P (2011) The struggle for life of the genomes selfish architects. Biol Direct 6(1):p19. doi: 10.1186/1745-6150-6-19 CrossRefGoogle Scholar
  21. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249. doi: 10.1093/nar/gkm977 Google Scholar
  22. Izsvak Z, Khare D, Behlke J, Heinemann U, Plasterk RH, Ivics Z (2002) Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J Biol Chem 277:34581–34588. doi: 10.1074/jbc.M204001200 PubMedCrossRefGoogle Scholar
  23. Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC Bioinfom 7:474. doi: 10.1186/1471-2105-7-474 CrossRefGoogle Scholar
  24. Leaver MJ (2001) A family of Tc1-like transposons from the genomes of fishes and frogs: evidence for horizontal transmission. Gene 271(2):203–214. doi: 10.1016/S0378-1119(01)00530-3 PubMedCrossRefGoogle Scholar
  25. Lerat E, Burlet N, Biemont C, Vieira C (2011) Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. Gene 473(2):100–109. doi: 10.1016/j.gene.2010.11.009 PubMedCrossRefGoogle Scholar
  26. Linheiro RS, Bergman CM (2012) Whole genome resequencing reveals natural target site preferences of transposable elements in drosophila melanogaster. PLoS One 7(2):e30008. doi: 10.1371/journal.pone.0030008 PubMedCrossRefGoogle Scholar
  27. Ludwig A, Loreto ELS (2008) Multiple invasions of Errantivirus in the genus Drosophila. Insect Mol Biol 17(2):113–124. doi: 10.1111/j.1365-2583.2007.00787.x PubMedCrossRefGoogle Scholar
  28. Merriman PJ, Grimes CD, Ambroziak J, Hackett DA, Skinner P, Simmons MJ (1995) S elements: a family of Tc1-like transposons in the genome of Drosophila melanogaster. Genetics 141:1425–1438PubMedGoogle Scholar
  29. Moschetti R, Chlamydas S, Marsano RM, Caizzi R (2008) Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons. Mol Genet Genomics 279:451–461. doi: 10.1007/s00438-008-0324-7 PubMedCrossRefGoogle Scholar
  30. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  31. Neron B, Ménager H, Maufrais C, Joly N, Maupetit J, Letort S, Carrene S, Tuffery P, Letondal C (2009) Mobyle: a new full web bioinformatics framework. Bioinformatics 25(22):3005–3011. doi: 10.1093/bioinformatics/btp493 PubMedCrossRefGoogle Scholar
  32. Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequences alignments. Distributed by the authorGoogle Scholar
  33. Ortiz MF, Loreto ELS (2009) Characterization of new hAT transposable elements in 12 Drosophila genomes. Genetica 135(1):67–75. doi: 10.1007/s10709-008-9259-5 CrossRefGoogle Scholar
  34. Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci 92:8050–8054PubMedCrossRefGoogle Scholar
  35. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol and Evol 25:1253–1256CrossRefGoogle Scholar
  36. Robe LJ, Valente VLS, Budnik M, Loreto ELS (2005) Molecular phylogeny of subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups; a nuclear versus mitochondrial gene approach. Mol Phyl Evol 36:623–640. doi: 10.1016/j.ympev.2005.05.005 CrossRefGoogle Scholar
  37. Robe LJ, Loreto ELS, Valente VLS (2009) Radiation of “Drosophila” subgenus (Drosophilidae, Diptera) in the Neotropics. J Zoo Syst Evol Res 48(4):310–321. doi: 10.1111/j.1439-0469.2009.00563.x CrossRefGoogle Scholar
  38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinforma 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  39. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241PubMedCrossRefGoogle Scholar
  40. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol and Evol 28(10):2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  41. Vieira J, Vieira C, Hartl D, Lozovskaya ER (1998) Factors contributing to the hybrid dysgenesis syndrome in Drosophila virilis. Genet Res 71:109–117PubMedCrossRefGoogle Scholar
  42. Wallau GL, Hua-Van A, Capy P, Loreto ELS (2011) The evolutionary history of mariner-like elements in Neotropical drosophilids. Genetica 139:327–338. doi: 10.1007/s10709-011-9552-6 PubMedCrossRefGoogle Scholar
  43. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi: 10.1038/nrg2165 PubMedCrossRefGoogle Scholar
  44. Yang H, Barbash DA (2008) Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes. Genome Biol 9(2):R39. doi: 10.1186/gb-2008-9-2-r39 PubMedCrossRefGoogle Scholar
  45. Yang Y, Hou Z-C, Qian Y-H, Kang H, Zeng Q-T (2012) Increasing data size to accurately reconstruct the phylogenetic relationship between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera). Mol Phyl and Evol 62:214–223. doi: 10.1016/j.ympev.2011.09.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Gabriel Luz Wallau
    • 1
  • Valéria Lima Kaminski
    • 2
  • Elgion L. S. Loreto
    • 1
    • 3
  1. 1.Pós Graduação em Biodiversidade AnimalUniversidade Federal de Santa MariaSanta MariaBrasil
  2. 2.Curso de Ciências BiológicasUniversidade Federal de Santa MariaSanta MariaBrasil
  3. 3.Departamento de BiologiaUniversidade Federal de Santa MariaSanta MariaBrasil

Personalised recommendations