, 139:1009 | Cite as

Multi-locus species tree of the chub genus Squalius (Leuciscinae: Cyprinidae) from western Iberia: new insights into its evolutionary history

  • Silke Waap
  • Ana R. Amaral
  • Bruno Gomes
  • M. Manuela Coelho


The phylogenetic relationships of the genus Squalius are believed to be well established based on the mitochondrial cytochrome b gene. Here, we inferred the phylogenetic relationships of all species inhabiting most of the western Iberia river systems using a nuclear multi-locus approach and different species tree methods: concatenation and coalescent-based methods (BEST and minimize-deep-coalescence). The dataset comprised sequences of seven coding and three non-coding regions belonging to seven nuclear genes, which were chosen to cover multiple biological functions: amh, bmp4, ef1a, egr2, irbp, rh and rpl8. We provide evidence for a conflicting topology between the nuDNA species tree and the widely reported mtDNA gene tree. S. pyrenaicus is rendered paraphyletic in all nuDNA species trees, with populations of the Tagus/Colares clustering with S. carolitertii, while populations from the Guadiana, Sado and Almargem form a separate clade. Although a larger sampling size encompassing the full spectrum of Squalius populations in western Iberia is still needed to fully elucidate the phylogeography and species delimitation of this genus, our results suggest that the two S. pyrenaicus clades may represent different species.


Nuclear genes BEST Minimize-deep-coalescence Species tree Squalius Western Iberia 



The authors would like to thank André Gille for providing us the tissue samples used as an outgroup, the Museu Nacional de História Natural—Universidade Lisboa for the tissue samples of S. aradensis and Maria Ana Aboim, Isa Matos and Miguel Machado for help in the field work. Funding was supported by the FCT Project PTDC/BIA-BDE/69769/2006. Part of this work was carried out using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation.

Supplementary material

10709_2011_9602_MOESM1_ESM.pdf (2.4 mb)
Supplementary material 1 (PDF 2412 kb)
10709_2011_9602_MOESM2_ESM.pdf (108 kb)
Supplementary material 2 (PDF 107 kb)


  1. Almada V, Sousa-Santos C (2010) Comparisons of the genetic structure of Squalius populations (Teleostei, Cyprinidae) from rivers with contrasting histories, drainage areas and climatic conditions based on two molecular markers. Mol Pylogenet Evol 57:924–931CrossRefGoogle Scholar
  2. Andeweg B, De Vicente G, Cloetingh S, Giner J, Muñoz Martin A (1999) Local stress fields and intraplate deformation of Iberia: variations in spatial and temporal interplay of regional stress sources. Tectonophysics 305:153–164CrossRefGoogle Scholar
  3. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  4. Brito RM, Briolay J, Galtier N, Bouvet Y, Coelho MM (1997) Phylogenetic relationships within genus Leuciscus (Pisces, Cyprinidae) in Portuguese fresh waters, based on mitochondrial DNA cytochrome b sequences. Mol Phylogenet Evol 8:435–442PubMedCrossRefGoogle Scholar
  5. Carstens BC, Knowles LL (2007) Estimating species phylogeny from gene-tree probabilities despite incomplete lineage sorting: an example from Melanoplus grasshoppers. Syst Biol 56:400–411PubMedCrossRefGoogle Scholar
  6. Coelho MM, Brito RM, Pacheco TR, Figueiredo D, Pires AM (1995) Genetic variation and divergence of Leuciscus pyrenaicus and L. carolitertii (Pisces, Cyprinidae). J Fish Biol 47:243–258CrossRefGoogle Scholar
  7. Coelho MM, Bogutskaya NG, Rodrigues JA, Collares-Pereira MJ (1998) Leuciscus torgalensis and L. aradensis, two new cyprinids from Portuguese fresh waters. J Fish Biol 52:937–950CrossRefGoogle Scholar
  8. Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, Catzflis FM, Spinger MS, Dourzery EJP (2002) Molecular phylogeny of living Xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol Biol Evol 19:1656–1671PubMedGoogle Scholar
  9. Doadrio I, Carmona JA (2003) Testing freshwater Lago Mare dispersal theory on the phylogeny relationships of Iberian cyprinid genera Chondrostoma and Squalius (Cypriniformes, Cyprinidae). Graellsia 59:457–473CrossRefGoogle Scholar
  10. Doadrio I, Carmona JA (2006) Phylogenetic overview of the genus Squalius (Actinopterygii, Cyprinidae) in the Iberian Peninsula, with description of two new species. Cybium 30:199–214Google Scholar
  11. Durand JD, Unlu E, Dodrio I, Pipoyan S, Templeton AR (2000) Origin, radiation, dispersion and allopatric hybridization in the chub Leuciscus cephalus. Proc R Soc Lond B 267:1687–1697CrossRefGoogle Scholar
  12. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMedGoogle Scholar
  13. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  14. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  15. Kubatko LS, Degnan JH (2007) Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 56:17–24PubMedCrossRefGoogle Scholar
  16. Liu L (2008) BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics 24:2542–2543PubMedCrossRefGoogle Scholar
  17. Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30PubMedCrossRefGoogle Scholar
  18. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.72
  19. Mayden RL, Chen W-J, Bart HL, Doosey MH, Simons AM, Tang KL, Wood RM, Agnew MK, Yang L, Hirt MV, Clements MD, Saitoh K, Sado T, Miya M, Nishida M (2009) Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fish-order Cypriniformes (Actinopterygii: Ostariohysi): a case study using multiple nuclear loci and the mitochondrial genome. Mol Phylogenet Evol 51:500–514PubMedCrossRefGoogle Scholar
  20. Mesquita N, Cunha C, Carvalho GR, Coelho MM (2007) Comparative phylogeography of endemic cyprinids in the south-west Iberian Peninsula: evidence for a new ichthyogeographic area. J Fish Biol 71:45–75CrossRefGoogle Scholar
  21. Nelson JS (2006) Fishes of the world. Wiley, New YorkGoogle Scholar
  22. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936PubMedGoogle Scholar
  23. Perea S, Böhme M, Zupančič P, Freyhof J, Šanda R, Özuluğ M, Abdoli A, Doadrio I (2010) Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol Biol 10:265PubMedCrossRefGoogle Scholar
  24. Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  25. Rambaut A, Drummond AJ (2007) Tracer: MCMC trace analysis tool v 1.4. University of Oxford, OxfordGoogle Scholar
  26. Rodríguez-Vidal J, Cáceres L, Ramirez A (1991) La red fluvial cuaternaria en el piedemonte de Sierra Morena occidental. Cuadernos de Investigación Geográfica 17:37–46Google Scholar
  27. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  28. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  29. Sanjur OI, Carmona A, Doadrio I (2003) Evolutionary and biogeographical patterns within Iberian populations of the genus Squalius inferred from molecular data. Mol Phylogenet Evol 29:20–30PubMedCrossRefGoogle Scholar
  30. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  31. Sousa-Santos C, Collares-Pereira MJ, Almada V (2007) Reading the history of a hybrid fish complex from its molecular record. Mol Phylogenet Evol 45:981–996PubMedCrossRefGoogle Scholar
  32. Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  33. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680CrossRefGoogle Scholar
  34. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591PubMedCrossRefGoogle Scholar
  35. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar
  36. Zardoya R, Economidis PS, Doadrio I (1999) Phylogenetic relationships of Greek Cyprinidar: molecular evidence for at least two origins of the Greek cyprinid fauna. Mol Phylogenet Evol 13:122–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Silke Waap
    • 1
  • Ana R. Amaral
    • 1
    • 2
  • Bruno Gomes
    • 1
  • M. Manuela Coelho
    • 1
  1. 1.Centro de Biologia Ambiental, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations