, 139:949 | Cite as

Genetic inferences about the population dynamics of codling moth females at a local scale

  • P. Franck
  • B. Ricci
  • E. K. Klein
  • J. Olivares
  • S. Simon
  • J.-M. Cornuet
  • C. Lavigne


Estimation of demographic parameters is important for understanding the functioning of natural populations and the underlying ecological and evolutionary processes that may impact their dynamics. Here, we used sibship assignment methods to shed light on the local dynamics of codling moth females in eight orchards in a 90-ha domain near Valence, France. Based on full-sib inference among 1,063 genotyped moths, we estimated (1) the effective number of females that had offspring, (2) their fertility and (3) the distribution of their oviposition sites within and among orchards. The average number of females in all the orchards increased between the first (~130) and the second (~235) annual generations. The average fertilities of the females were similar at each generation according to the host plant considered (apple, pear, or walnut), but differed between commercial (~10) and non-treated (~25) apple orchards. Females mainly clustered their eggs on contiguous trees along orchard borders, but they also occasionally dispersed their eggs among different orchards independently of the cultivated host plants or the inter-orchard distances (up to 698 m) during the second annual generation. The mean distance between two oviposition sites was 30 m. Sibship estimates of both the effective number of females and the inter-orchard migration rates (~5%) were in agreement with the observed genetic differentiation among the eight orchards (0.006 < F st  < 0.013). These results confirm and extend previous field and laboratory observations in Cydia pomonella, and they demonstrate that sibship assignments based on genetic data are an interesting alternative to mark-release-recapture methods for inferring insect population dynamics.


Cydia pomonella Lepidoptera Microsatellite Genetic structure Sibship assignment Population dynamics 



We are grateful to Denis Allard and Joel Chadoeuf for their help in the development of the statistical models. We thank Hubert Defrance, Freddy Combe, Karine Morel and Jean-Francois Toubon for their assistance in collecting codling moth larvae, Dominique Beslay, Fabien Tudela and Benjamin Dolmetta in monitoring adult emergences, and Benoît Sauphanor and Thomas Guillemaud for their useful comments on early versions of the manuscript. This work was funded by INRA (Department “Santé des Plantes & Environnement”) and the ECOGER program “Ecco des vergers”.


  1. Audemard H, Esteban-Duran J (1974) Variation de la fécondité du carpocapse (Laspeyresia pomonella L.) dans la nature et ses rapports avec la taille des spermatophores. C R Acad Sci Biol 278:2671–2674Google Scholar
  2. Balding DJ, Nichols RA (1995) A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. Genetica 96:3–12PubMedCrossRefGoogle Scholar
  3. Baudry E, Solignac M, Garnery L, Gries M, Cornuet J-M et al (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation. Proc R Soc B Biol Sci 265:2009–2014CrossRefGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Method 57:289–300Google Scholar
  5. Berry O, Tocher MD, Sarre SD (2004) Can assignment tests measure dispersal? Mol Ecol 13:551–561PubMedCrossRefGoogle Scholar
  6. Biache G, Guillon M, Waffelaert AM (2000) Evidence of residual effects of CpGV in IPM programs. In: Muller W, Polesny F, Verheyden C, Webster AD (eds) IVth ISHS symposium on integrated fruit production. International Society of Horticultural Science, Leuven, pp 277–283Google Scholar
  7. Boivin T, Chabert d’Hières C, Bouvier J-C, Beslay D, Sauphanor B (2001) Pleiotropy of insecticide resistance in the codling moth, Cydia pomonella. Entomol Exp Appl 99:381–386CrossRefGoogle Scholar
  8. Causse R (1976) Etude de la localisation et de la mortalité hivernale des larves de Laspeyresia pomonella L. (Lepidoptera, Tortricidae) en vergers modernes de pommiers de la basse vallée du Rhône. An Zool Ecol Anim 8:83–101Google Scholar
  9. Causse R, Feron M (1979) Etude expérimentale au moyen d’une phéromone de synthèse du piégeage et de la dispersion de mâles marqués Laspeyresia pomonella L. (Lepidoptera, Tortricidae). An Zool Ecol Anim 11:599–609Google Scholar
  10. Chen MH, Dorn S (2010) Microsatellite reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Entomol Res 100:75–85PubMedCrossRefGoogle Scholar
  11. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756CrossRefGoogle Scholar
  12. Cisneros FH, Barnes MM (1974) Contribution to the biologiocal and ecological characterization of apple and walnut host races of codling moth, Laspeyresia pomonella (L.): moth longevity and oviposition capacity. Environ Entomol 3:402–406Google Scholar
  13. Csilléry K, Johnson T, Beraldi D, Clutton-Brock TH, Coltman D et al (2006) Performance of marker-based relatedness estimators in natural populations of outbred vertebrates. Genetics 173:2091–2101PubMedCrossRefGoogle Scholar
  14. Cumming GS, Spiesman BJ (2006) Regional problems need integrated solutions: pest management and conservation biology in agroecosystems. Biol Conserv 131:533–543CrossRefGoogle Scholar
  15. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38Google Scholar
  16. Franck P, Timm AE (2010) Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. J Appl Entomol 134:191–200CrossRefGoogle Scholar
  17. Franck P, Guérin F, Loiseau A, Sauphanor B (2005) Isolation and characterization of microsatellite loci in the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae). Mol Ecol Notes 5:99–102CrossRefGoogle Scholar
  18. Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Mol Ecol 16:3554–3564PubMedCrossRefGoogle Scholar
  19. Jiménez-Pérez A, Wang Q (2004) Male remating behavior and its effect on female reproductive fitness in Cnephasia jactatana Walker (Lepidoptera: Tortricidae). J Insect Behav 17:685–694CrossRefGoogle Scholar
  20. Jones OR, Wang J (2010) Molecular marker-based pedigrees for animal conservation biologists. Anim Conserv 13:26–34CrossRefGoogle Scholar
  21. Keil S, Gu H, Dorn S (2001) Response of Cydia pomonella to selection on mobility: laboratory evaluation and field verification. Ecol Entomol 26:495–501CrossRefGoogle Scholar
  22. Light DM, Knight AL, Henrick CA, Rajapaska D, Lingren B, Dickens JC, Reynolds KM, Buttery RG, Merrill G, Roitman J, Campbell BC (2001) A pear-derived kairomone with pheromonal potency that attracts male and female codling moth, Cydia pomonella (L.). Naturwissenschaften 88:333–338Google Scholar
  23. Mani E, Wildbolz T (1977) The dispersal of male codling moths (Laspeyresia pomonella L.) in the Upper Rhine Valley. J Appl Entomol 83:161–168Google Scholar
  24. Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A et al (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185PubMedCrossRefGoogle Scholar
  25. Palsbøll PJ, Peery MZ, Bérubé M (2010) Detecting populations in the ‘ambiguous’ zone: kinship-based estimation of population structure at low genetic divergence. Mol Ecol Resour 10:797–805PubMedCrossRefGoogle Scholar
  26. Pashley DP, Bush GL (1979) The use of allozymes in studying insect movement with special reference to the codling moth, Laspeyresia pomonella, (L.) (Olethreutidae). In: Rabb RL, Kennedy GG (eds) Movement of highly mobile insects: concepts and methodology in research. North Carolina State University, Raleigh, pp 333–341Google Scholar
  27. Phillips PA, Barnes MM (1975) Host race formation among sympatric apple, walnut, and plum populations of the codling moth, Laspeyresia pomonella. Ann Entomol Soc Am 68:1053–1060Google Scholar
  28. Randall DA, Pollinger JP, Wayne RK, Tallents LA, Johnson PJ et al (2007) Inbreeding is reduced by female-biased dispersal and mating behavior in Ethiopian wolves. Behav Ecol 18:579–589CrossRefGoogle Scholar
  29. Reyes M, Franck P, Olivares J, Margaritopoulos J, Knight A, Sauphanor B (2009) Worldwide variability of insecticide resistance mechanisms in the codling moth Cydia pomonella L. (Lepidoptera: Tortricidae). Bull Entomol Res 99:359–369PubMedCrossRefGoogle Scholar
  30. Ricci B, Franck P, Toubon J-F, Bouvier J-C, Sauphanor B et al (2009) The influence of landscape on insect pest dynamics: a case study in southeastern France. Landsc Ecol 24:337–349CrossRefGoogle Scholar
  31. Ricci B, Franck P, Bouvier J, Casado D, Lavigne C (2011) Effects of hedgerow characteristics on the intra-orchard spatial distribution of codling moth. Agric Ecosyst Environ 140:395–400CrossRefGoogle Scholar
  32. Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  33. Schumacher P, Weyeneth A, Weber DC, Dorn S (1997a) Long flights in Cydia pomonella L. (Lepidoptera: Tortricidae) measured by a flight mill: influence of sex, mated status and age. Physiol Entomol 22:149–160CrossRefGoogle Scholar
  34. Schumacher P, Weber DC, Hagger C, Dorn S (1997b) Heritability of long flight distance for Cydia pomonella. Entomol Exp Appl 85:169–175CrossRefGoogle Scholar
  35. Steiner LF (1940) Codling moth flight habits and their influence on results of experiments. J Econ Entomol 33:436–440Google Scholar
  36. Thaler R, Brandstätter A, Meraner A, Chabicovski M, Parson W et al (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Mol Phylogenet Evol 48:838PubMedCrossRefGoogle Scholar
  37. Thompson EA (1976) Inference of genealogical structure. III. The reconstruction of genealogies. Soc Sci Inf 15:507–526Google Scholar
  38. Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99:341–348PubMedCrossRefGoogle Scholar
  39. Torres-Vila LM, Rodriguez-Molina MC, Jennions MD (2004) Polyandry and fecundity in the Lepidoptera: can methodological and conceptual approaches bias outcomes? Behav Ecol Sociobiol 55:315–324CrossRefGoogle Scholar
  40. Tyson R, Thistlewood H, Judd GJR (2007) Modelling dispersal of sterile male codling moths, Cydia pomonella, across orchard boundaries. Ecol Model 205:1–12CrossRefGoogle Scholar
  41. van der Gueest LPS, Evenhuis HH (1991) World crop pests: tortricid pest, their biology, natural enemies and control. Elsevier, Amsterdam, p 808Google Scholar
  42. van Horn RC, Altmann J, Alberts SC (2008) Can’t get there from here: inferring kinship from pairwise genetic relatedness. Anim Behav 75:1173CrossRefGoogle Scholar
  43. van Leeuwen ER (1940) The activity of adult codling moths as indicated by capture of marked moths. J Econ Entomol 33:162–166Google Scholar
  44. Walling CA, Pemberton JM, Hadfield JD, Kruuk LEB (2010) Comparing parentage inference software: reanalysis of a red deer pedigree. Mol Ecol 19:1914–1928PubMedCrossRefGoogle Scholar
  45. Walsh PS, Metzger DA, Higuchi R (1991) Chelex (R)100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:507Google Scholar
  46. Wang J (2009) A new method for estimating effective population sizes from a single sample of multilocus genotypes. Mol Ecol 18:2148–2164PubMedCrossRefGoogle Scholar
  47. Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439PubMedCrossRefGoogle Scholar
  48. White LD, Hutt RB, Butt BA (1973) Field dispersal of laboratory-reared female codling moth and population suppression by release of sterile males. Environ Entomol 2:66–69Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • P. Franck
    • 1
  • B. Ricci
    • 1
  • E. K. Klein
    • 2
  • J. Olivares
    • 1
  • S. Simon
    • 3
  • J.-M. Cornuet
    • 4
  • C. Lavigne
    • 1
  1. 1.UR1115 Plantes et Systèmes de culture Horticoles, INRAAvignon cedex 9France
  2. 2.UR546 Biostatistique et Processus Spatiaux, INRAAvignon cedex 9France
  3. 3.UE695 Recherches Intégrées, Gotheron, INRASaint-Marcel-les-ValenceFrance
  4. 4.UMR1062 Centre de Biologie et de Gestion des Populations, INRA, IRD, CIRAD, SupAgro MontpellierMontferrier-sur-Lez cedexFrance

Personalised recommendations