, 139:921 | Cite as

Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location

  • Diogo C. Cabral-de-Mello
  • Josefa Cabrero
  • María Dolores López-León
  • Juan Pedro M. Camacho


We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers.


Fluorescence in situ hybridization Grasshopper Histone genes Multigene families rDNA 



This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. The scientific scholarship of Cabral-de-Mello DC was granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).


  1. Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583PubMedCrossRefGoogle Scholar
  2. Andrews MT, Vaughn JC, Perry BA, Bagshaw JC (1987) Interspersion of histone and 5S RNA genes in Artemia. Gene 51:61–67PubMedCrossRefGoogle Scholar
  3. Averbeck KT, Eickbush TH (2005) Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171:1837–1846PubMedCrossRefGoogle Scholar
  4. Barzotti R, Pelliccia F, Bucciarelli E, Rocchi A (2000) Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histone genes and a 5S rRNA gene in an isopod crustacean species. Genome 43:341–345PubMedCrossRefGoogle Scholar
  5. Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosom Res 9:129–136CrossRefGoogle Scholar
  6. Belyayev A, Raskina O, Nevo E (2005) Variability of Ty3-gypsy retrotransposons chromosomal distribution in populations of two wild Triticeae species. Cytogenet Genome Res 109:43–50PubMedCrossRefGoogle Scholar
  7. Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400PubMedCrossRefGoogle Scholar
  8. Cabral-de-Mello DC, Martins C, Souza MJ, Moura RC (2011a) Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in four ancient Proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families. Cytogenet Genome Res 132:89–93PubMedCrossRefGoogle Scholar
  9. Cabral-de-Mello DC, Moura RC, Martins C (2011b) Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet Genome Res 134:127–135PubMedCrossRefGoogle Scholar
  10. Cabrero J, Camacho JP (2008) Location and expression of ribosomal RNA genes in grasshoppers: Abundance of silent and cryptic loci. Chromosom Res 16:595–607CrossRefGoogle Scholar
  11. Cabrero J, Bakkali M, Bugrov A et al (2003) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112:207–211PubMedCrossRefGoogle Scholar
  12. Cabrero J, López-León MD, Teruel M, Camacho JP (2009) Chromossome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res 17:397–404PubMedCrossRefGoogle Scholar
  13. Cai Q, Zhang DM, Liu ZL, Wang XR (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722PubMedCrossRefGoogle Scholar
  14. Camacho JPM, Cabrero J, Viseras E, López-León MD, Navas-Castillo J, Alché JD (1991) G-Banding in two species of grasshopper and its relationship to C, N, and fluorescence banding techniques. Genome 34:638–643CrossRefGoogle Scholar
  15. Castro J, Rodriguez S, Pardo BG, Sánchez L, Martínez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity 86:291–302PubMedCrossRefGoogle Scholar
  16. Cioffi MB, Martins C, Bertollo LAC (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:271PubMedCrossRefGoogle Scholar
  17. Cohen S, Menut S, Mechali M (1999) Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol 19:6682–6689PubMedGoogle Scholar
  18. Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13:1133–1145PubMedCrossRefGoogle Scholar
  19. Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034PubMedCrossRefGoogle Scholar
  20. Cohen S, Agmon N, Sobol O, Segal D (2010) Extra chromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA 1:11PubMedCrossRefGoogle Scholar
  21. Colomba MS, Vitturi R, Castriota L, Bertoni A, Libertini A (2002) FISH mapping of 18S 28S and 5S ribosomal DNA, (GATA)n and (TTAGGG)n telomeric repeats in the periwinkle Melarhaphe neritoides (Prosobranchia, Gastropoda, Caenogastropoda). Heredity 88:381–384PubMedCrossRefGoogle Scholar
  22. Contreras D, Chapco W (2006) Molecular phylogenetic evidence for multiple dispersal events in gomphocerine grasshoppers. J Orthop Res 15:91–98CrossRefGoogle Scholar
  23. Cruces J, Díaz-Guerra M, Gil I, Renart J (1989) The 5S rRNA-histone repeat in the crustacean Artemia: structure, polymorphism and variation of the 5S rRNA segment in different populations. Nucleic Acids Res 17:6283–6297PubMedCrossRefGoogle Scholar
  24. Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosom Res 14:845–857CrossRefGoogle Scholar
  25. Degroote F, Pont G, Micard D, Picard G (1989) Extrachromosomal circular DNAs in Drosophila melanogaster: comparison between embryos and Kc0% cells. Chromosoma 98:201–206PubMedCrossRefGoogle Scholar
  26. Descamps M (1973) Révision des Eumastacoidea aux échelons des familles et des sous-familles (genitalia, répartition, phylogénie). Acrida 2:161–298Google Scholar
  27. Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeated units of other multigene families. Mol Biol Evol 12:481–493PubMedGoogle Scholar
  28. Drouin G, Hofman JD, Doolittle WF (1987) Unusual ribosomal RNA gene organization in copepods of the genus Calanus. J Mol Biol 196:943–946PubMedCrossRefGoogle Scholar
  29. Drouin G, Sévigni J-M, McLares IA, Hofman JD, Doolittle WF (1992) Variable arrangement of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol 9:826–835PubMedGoogle Scholar
  30. Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367–1377PubMedGoogle Scholar
  31. Eickbush DG, Eickbush TH (2003) Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol 23:3825–3836PubMedCrossRefGoogle Scholar
  32. Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with ‘‘orphon’’ features. J Mol Evol 58:131–144PubMedCrossRefGoogle Scholar
  33. Frederiksen S, Cao H, Lomholt B, Levan G, Hallemberg C (1997) The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12 → qter and the pseudogene repeat maps to 12q12. Cytogenet Cell Genet 76:101–106PubMedCrossRefGoogle Scholar
  34. Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR (2006) Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol Biol 15:657–686PubMedCrossRefGoogle Scholar
  35. Gornung E, Kartavenko T, Kurchashova S, Kireev I, Fais D (2005) Physical mapping of the 5S rRNA in the common sea urchin, Paracentrotus lividus (Echinodermata: Echinoidea), by in situ hybridization. Cytogenet Genome Res 111:186cCrossRefGoogle Scholar
  36. Graves RA, Marzluff WF, Giebelhaus DH, Schultz GA (1985) Quantitative and qualitative changes in histone gene expression during early mouse embryo development. Proc Natl Acad Sci USA 82:5685–5689PubMedCrossRefGoogle Scholar
  37. Hankeln T, Keyl HG, Ross R, Schmidt ER (1993) Evolution of histone gene loci in chironomid midges. Genome 36:852–862PubMedCrossRefGoogle Scholar
  38. Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD et al (1996) Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61PubMedCrossRefGoogle Scholar
  39. Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69:3394–3398PubMedCrossRefGoogle Scholar
  40. Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O et al (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838PubMedCrossRefGoogle Scholar
  41. Long EO, Dawid ID (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764PubMedCrossRefGoogle Scholar
  42. López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosom Res 7:83–88CrossRefGoogle Scholar
  43. Loreto V, Cabrero J, López-León MD, Camacho JP, Souza MJ (2008) Possible autosomal origin of macro B chromosomes in two grasshopper species. Chromosom Res 16:233–241CrossRefGoogle Scholar
  44. Lucchini S, Nardi I, Barsacchi G, Batistoni R, Andronico F (1993) Molecular cytogenetics of the ribosomal (18S + 28S and 5S). DNA loci in primitive and advance urodele amphibians. Genome 36:762–773PubMedCrossRefGoogle Scholar
  45. Mandrioli M, Colomba MS, Vitturi R (2000) Chromosomal analysis of repeated DNAs in the rainbow wrasse Coris julis (Pisces Labridae). Genetica 108:191–195PubMedCrossRefGoogle Scholar
  46. Martínez JL, Morán P, García Vázquez E, Pendás AM (1996) Chromosome localization of the major and 5S rRNA genes in the European eel (Anguilla anguilla). Cytogenet Cell Genet 73:149–152PubMedCrossRefGoogle Scholar
  47. Martínez-Navarro EM, Serrano J, Galián J (2004) Chromosome evolution in ground beetles: localization of the rDNA loci in the tribe Harpalini (Coleoptera, Carabidae). J Zool Syst Evol Res 42:38–43CrossRefGoogle Scholar
  48. Martíns C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, Hauppauge, pp 289–318Google Scholar
  49. Matt S, Flook PQ, Rowel CHF (2008) A partial molecular phylogeny of the Eumastacoidea s. lat. (Orthoptera, Caelifera). J Orthop Res 17:43–55CrossRefGoogle Scholar
  50. Maxson R, Cohn R, Kedes L (1983) Expression and organization of histone genes. Ann Rev Gen 17:239–277CrossRefGoogle Scholar
  51. Mellink CHM, Bosma AA, Haan NA, Zijlstra C (1996) Physical localization of 5S rRNA genes in the pig by fluorescence in situ hybridization. Hereditas 124:95–97PubMedCrossRefGoogle Scholar
  52. Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152PubMedCrossRefGoogle Scholar
  53. Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354PubMedCrossRefGoogle Scholar
  54. Pedrosa-Harand A, Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common vean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933PubMedCrossRefGoogle Scholar
  55. Pendás AM, Morán P, García-Vázquez E (1994) Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma 103:147–152PubMedCrossRefGoogle Scholar
  56. Penton EH, Crease TJ (2004) Evolution of the transposable element pokey in the ribosomal DNA of species in the subgenus Daphnia (Crustacea: Cladocera). Mol Biol Evol 21:1727–1739PubMedCrossRefGoogle Scholar
  57. Pisano E, Ghigliotti L (2009) Ribosomal genes in notothenioid fishes: focus on the chromosomal organisation. Mar Genomics 2:75–80CrossRefGoogle Scholar
  58. Pont G, Degroote F, Picard G (1987) Some extrachromosomal circular DNAs from Drosophila embryos are homologous to tandemly repeated genes. J Mol Biol 195:447–451PubMedCrossRefGoogle Scholar
  59. Ranz JM, González J, Casals F, Ruiz A (2003) Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 57:1325–1335PubMedGoogle Scholar
  60. Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm -like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res 12:153–161CrossRefGoogle Scholar
  61. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357PubMedCrossRefGoogle Scholar
  62. Rezende-Teixeira P, Siviero F, Rosa MC, Machado-Santelli GM (2009) The R2 mobile element of Rhynchosciara americana: molecular, cytological and dynamic aspects. Chromosom Res 17:455–467CrossRefGoogle Scholar
  63. Sánchez-Gea JF, Serrano J, Galián J (2000) Variability in rDNA loci in Iberian species of the genus Zabrus (Coleoptera: Carabidae) detected by fluorescence in situ hybridization. Genome 43:22–28PubMedGoogle Scholar
  64. Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in Amphibia. IV. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95:271–284PubMedCrossRefGoogle Scholar
  65. Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae S-Lat)-inferences from the specifity of silver staining. Plant Syst Evol 144:291–305CrossRefGoogle Scholar
  66. Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  67. Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263:586–591PubMedCrossRefGoogle Scholar
  68. Srikulnath K, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S et al (2009) Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenet Genome Res 125:213–223PubMedCrossRefGoogle Scholar
  69. Steffensen DM, Duffey P (1974) Localization of 5S ribosomal DNA genes on human chromosome 1. Nature 252:741–743PubMedCrossRefGoogle Scholar
  70. Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225PubMedCrossRefGoogle Scholar
  71. Tripputi P, Emanuel BS, Croce CM, Green LG, Stein GS, Stein JL (1986) Human histone genes map to multiple chromosomes. Proc Natl Acad Sci USA 83:3185–3188PubMedCrossRefGoogle Scholar
  72. Turner PC, Bagenal EBD, Vlad MT, Woodland HR (1988) The organization and expression of histone genes from Xenopus borealis. Nucl Acids Res 16:3471–3485PubMedCrossRefGoogle Scholar
  73. Vahidi H, Curran J, Nelson DW, Webster JM, Mcclure MA, Honda BM (1988) Unusual sequences, homologous to 5s RNA, in ribosomal DNA repeats of the nematode Meloidogyne arenaria. J Mol Evol 27:222–227PubMedCrossRefGoogle Scholar
  74. Vitelli L, Batistoni R, Andronico F, Nardi I, Barsacchi-Pilone G (1982) Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionary divergent anuran amphibians. Chromosoma 84:475–491PubMedCrossRefGoogle Scholar
  75. Vitturi R, Colomba M, Mandrioli M, Pirrone AM (2002) rDNA (18S–28S and 5S) co-localization and linkage between ribosomal genes and (TTAGGG)n telomeric sequence in the earthworm Octodrilus complanatus (Annelida: Oligochaeta: Lumbricidae) revealed by single- and double-colour FISH. J Hered 93:279–282PubMedCrossRefGoogle Scholar
  76. Vitturi R, Sineo L, Volpe N, Lannino A, Colomba M (2004) Repetitive DNAs in the slug Milax nigricans: association of ribosomal (18S–28S and 5S rDNA) and (TTAGGG)n telomeric sequences) in the slug M nigricans (Mollusca: Gastropoda: Pulmonata). Micron 35:255–260PubMedCrossRefGoogle Scholar
  77. Wang Y, Guo X (2004) Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution. Biol Bull 207:247–256PubMedCrossRefGoogle Scholar
  78. Zhang L, Bao Z, Wang S, Huang X, Hu J (2007) Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops. Genetica 130:193–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Diogo C. Cabral-de-Mello
    • 2
  • Josefa Cabrero
    • 1
  • María Dolores López-León
    • 1
  • Juan Pedro M. Camacho
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Biologia, Instituto de BiociênciasUniversidade Estadual PaulistaRio ClaroBrazil

Personalised recommendations