Advertisement

Genetica

, Volume 138, Issue 11–12, pp 1211–1219 | Cite as

Molecular characterization and evolution of an interspersed repetitive DNA family of oysters

  • Inmaculada López-Flores
  • Carmelo Ruiz-Rejón
  • Ismael Cross
  • Laureana Rebordinos
  • Francisca Robles
  • Rafael Navajas-Pérez
  • Roberto de la Herrán
Article

Abstract

When genomic DNA from the European flat oyster Ostrea edulis L. was digested by BclI enzyme, a band of about 150 bp was observed in agarose gel. After cloning and sequencing this band and analysing their molecular characteristics and genomic organization by means of Southern blot, in situ hybridisation, and polymerase chain reaction (PCR) protocols, we concluded that this band is an interspersed highly repeated DNA element, which is related in sequence to the flanking regions of (CT)-microsatellite loci of the species O. edulis and Crassostrea gigas. Furthermore, we determined that this element forms part of a longer repetitive unit of 268 bp in length that, at least in some loci, is present in more than one copy. By Southern blot hybridisation and PCR amplifications—using primers designed for conserved regions of the 150-bp BclI clones of O. edulis—we determined that this repetitive DNA family is conserved in five other oyster species (O. stentina, C. angulata, C. gigas, C. ariakensis, and C. sikamea) while it is apparently absent in C. gasar. Finally, based on the analysis of the repetitive units in these oyster species, we discuss the slow degree of concerted evolution in this interspersed repetitive DNA family and its use for phylogenetic analysis.

Keywords

Oyster Interspersed repetitive DNA Concerted evolution Ostrea Crassostrea FISH 

Notes

Acknowledgments

This research was supported by grants from the Plan Andaluz de Investigación (Group Nos. BIO200 and BIO219) and a grant from the Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía (Project No. C03-082). We are greatly indebted to Dr. José Ignacio Navas (CIFPA “Agua del Pino”, Huelva, Spain) for his help in sampling and technical assistance. We also thank our colleagues Pierre Boudry for providing us some oyster samples, and to our colleague David Nesbitt for revising our English text.

References

  1. Boudry P, Heurtebise S, Lapègue S (2003) Mitochondrial and nuclear DNA sequence variation of presumed Crassostrea gigas and C. angulata specimens: a new oyster species in Hong Kong. Aquaculture 228:15–25CrossRefGoogle Scholar
  2. Canapa A, Barucca M, Cerioni PN, Olmo E (2000) A satellite DNA containing CENP-B box-like motifs is present in the Antarctic scallop Adamussium colbecki. Gene 247:175–180CrossRefPubMedGoogle Scholar
  3. Carlsson J, Morrison CL, Reece KS (2006) Wild and aquaculture populations of the eastern oyster compared using microsatellites. J Hered 97:595–598CrossRefPubMedGoogle Scholar
  4. Cross I, Vega L, Rebordinos L (2003) Nucleolar organizing regions in Crassostrea angulata: chromosomal location and polymorphism. Genetica 119:65–74CrossRefPubMedGoogle Scholar
  5. Cross I, Díaz E, Sánchez I, Rebordinos L (2005) Molecular and cytogenetic characterization of Crassostrea angulata chromosomes. Aquaculture 247:135–144CrossRefGoogle Scholar
  6. Dover G (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–117CrossRefPubMedGoogle Scholar
  7. Dover G (1986) Molecular drive in multigene families: how biological novelties arise, spread and are assimilated. Trends Genet 2:159–165CrossRefGoogle Scholar
  8. Elder M, Turner J (1995) Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol 70:297–320CrossRefPubMedGoogle Scholar
  9. El-Sawy M, Deininger P (2005) Tandem insertions of Alu elements. Cytogenet Genome Res 108:58–62CrossRefPubMedGoogle Scholar
  10. Gaffney PM, Pierce JC, Mackinley AG, Titchen DA, Glenn WK (2003) Pearl, a novel family of putative transposable elements in bivalve mollusks. J Mol Evol 56:308–316CrossRefPubMedGoogle Scholar
  11. Graur D, Li WH (1999) Fundamentals of molecular evolution, 2nd edn. Sinauer Associates, Inc., Sunderland, MAGoogle Scholar
  12. Jozefowicz CJ, Ò Foighil D (1998) Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Mol Phyl Evol 10:426–435CrossRefGoogle Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  14. Klinbunga S, Pripue P, Khamnamtong N, Puanglarp N, Tassanakajon A, Jarayabhand P, Hirono I, Aoki T, Menasveta P (2003) Genetic diversity and molecular markers of the tropical abalone (Haliotis asinina) in Thailand. Mar Biotechnol 5:505–517CrossRefPubMedGoogle Scholar
  15. Korringa P (1952) Recent advances in oyster biology. Q Rev Biol 27:266–365CrossRefPubMedGoogle Scholar
  16. Lapègue S, Boutet I, Leitão A, Heurtebise S, Garcia P, Thiriot-Quiévreux C, Boudry P (2002) Trans-Atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. Biol Bull 202:232–242CrossRefPubMedGoogle Scholar
  17. Littlewood DTJ (1994) Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Mol Phyl Evol 3:221–229CrossRefGoogle Scholar
  18. López-Flores I, de la Herrán R, Garrido-Ramos MA, Boudry P, Ruiz-Rejón C, Ruiz-Rejón M (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188CrossRefPubMedGoogle Scholar
  19. Luchetti A, Marini M, Mantovani B (2006) Non-concerted evolution of RET76 satellite DNA family in Reticulitermes taxa (Insecta, Isoptera). Genetica 128:123–132CrossRefGoogle Scholar
  20. Martínez-Lage A, Rodríguez F, González-Tizón A, Prats E, Cornudella L, Méndez J (2002) Comparative analysis of different satellite DNAs in four Mytilus species. Genome 45:922–929CrossRefPubMedGoogle Scholar
  21. Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185CrossRefPubMedGoogle Scholar
  22. Muchmore ME, Moy GW, Swanson WJ, Vacquier VD (1998) Direct sequencing of genomic DNA for characterization of a satellite DNA in five species of Eastern Pacific abalone. Mol Mar Biol Biotechnol 7:1–6PubMedGoogle Scholar
  23. Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2005) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (polygonaceae). J Mol Evol 60:391–399CrossRefPubMedGoogle Scholar
  24. Navajas-Pérez R, Rubio-Escudero C, Aznarte JL, Ruiz-Rejón M, Garrido-Ramos MA (2007) SatDNA analyzer: a computing tool for satellite-DNA evolutionary analysis. Bioinformatics 23:767–768CrossRefPubMedGoogle Scholar
  25. Nei M (1987) Molecular evolutionary genetics. Columbia Press, New YorkGoogle Scholar
  26. Nozawa M, Kumagai M, Aotsuka T, Tamura K (2006) Unusual evolution of interspersed repeat sequences in the Drosophila ananassae subgroup. Mol Biol Evol 23:981–987CrossRefPubMedGoogle Scholar
  27. Ò Foighil D, Taylor DJ (2000) Evolution of parental care and ovulation behaviour in oysters. Mol Phyl Evol 15:301–313CrossRefGoogle Scholar
  28. Ò Foighil D, Gaffney PM, Wilbur AE, Hilbish TJ (1998) Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol 131:497–503CrossRefGoogle Scholar
  29. Palomeque T, Carrillo JA, Muñoz-López M, Lorite P (2006) Detection of a mariner-like element and miniature inverted-repeat transposable element (MITE) associated with the heterochromatin from ants of genus Messor and their possible involvement for satellite DNA evolution. Gene 371:194–205CrossRefPubMedGoogle Scholar
  30. Plohl M, Petrović V, Luchetti A, Ricci A, Šatović E, Passamonti M, Mantovani B (2010) Long-term conservation vs high sequence divergente: the case of an extraordinarily old satellite DNA in bivalve mollusks. Heredity 104:543–551CrossRefPubMedGoogle Scholar
  31. Robles F, de la Herrán R, Ludwig A, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2004) Evolution of ancient satellite DNAs in sturgeon genomes. Gene 338:133–142CrossRefPubMedGoogle Scholar
  32. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefPubMedGoogle Scholar
  33. Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  34. Sobolewska H, Beaumont AR, Hamilton A (2001) Dinucleotide microsatellites isolated from the European flat oyster, Ostrea edulis. Mol Ecol Notes 1:79–80CrossRefGoogle Scholar
  35. Stenzel HB (1971) Oysters. Part N. Bivalvia. Treatise on invertebrate paleontology, vol 3. University of Kansas and the Geological Society of America Inc., Boulder, CO, p 1224Google Scholar
  36. Winnepenninckx B, Backeljau T, de Wachter R (1993) Extraction of high molecular weigh DNA from molluscs. Trends Genet 9:407CrossRefPubMedGoogle Scholar
  37. Yu H, Li Q (2007) Genetic variation of wild and hatchery populations of the pacific oyster Crassostrea gigas assessed by microsatellite markers. J Genet Genom 34(12):1114–1122. PMID: 18155624Google Scholar
  38. Zhang Q, Allen SK, Reece KS (2005) Genetic variation in wild and hatchery stocks of Suminoe oyster (Crassostrea ariakensis) assessed by PCR-RFLP and microsatellite markers. Mar Biotechnol 7:588–599CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Inmaculada López-Flores
    • 1
  • Carmelo Ruiz-Rejón
    • 1
  • Ismael Cross
    • 2
  • Laureana Rebordinos
    • 2
  • Francisca Robles
    • 1
  • Rafael Navajas-Pérez
    • 1
  • Roberto de la Herrán
    • 1
  1. 1.Departamento de Genética, Facultad de CienciasUniversidad de GranadaGranadaSpain
  2. 2.Laboratorio de Genética, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto Real, CádizSpain

Personalised recommendations