Advertisement

Genetica

, Volume 138, Issue 11–12, pp 1127–1132 | Cite as

Heteromorphic Z and W sex chromosomes in Physalaemus ephippifer (Steindachner, 1864) (Anura, Leiuperidae)

  • Juliana Nascimento
  • Yeda Rumi Serra Douglas Quinderé
  • Shirlei Maria Recco-Pimentel
  • Janaína Reis Ferreira Lima
  • Luciana Bolsoni Lourenço
Original Research

Abstract

Heteromorphisms between sex chromosomes are rarely found in anurans and sex chromosome differentiation is considered to be a set of recent recurrent events in the evolutionary history of this group. This paper describes for the first time heteromorphic sex chromosomes Z and W in the leiuperid genus Physalaemus. They were found in P. ephippifer, a species of the P. cuvieri group, and corresponded to the eighth pair of its karyotype. The W chromosome differed from the Z chromosome by the presence of an additional segment in the short arm, composed of a distal NOR and an adjacent terminal DAPI-positive C-band. The identification of this sex chromosome pair may help in future investigations into the sex determining genes in the genus Physalaemus.

Keywords

Sex chromosome Physalaemus Cytogenetics Heterochromatin 

Notes

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/PROEX).

References

  1. Abramyan J, Feng C, Koopman P (2009) Cloning and expression of canditade sexual development genes in the Cane Toad (Bufo marinus). Dev Dyn 238:2430–2441CrossRefPubMedGoogle Scholar
  2. Amaral MJLV, Cardoso AJ, Recco-Pimentel SM (2000) Cytogenetic analysis of three Physalaemus species (Amphibia, Anura). Caryologia 53:283–288Google Scholar
  3. Ananias F, Modesto AD, Mendes SC, Napoli MF (2007) Unusual primitive heteromorphic ZZ/ZW sex chromosomes in Proceratophrys boiei (Anura, Cycloramphidae, Alsodinae), with description of C-band interpopulational polymorphism. Hereditas 144:206–212CrossRefPubMedGoogle Scholar
  4. Brown DD, Sugimoto K (1973) 5S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family. J Mol Biol 78:397–415CrossRefPubMedGoogle Scholar
  5. Brownlee GG, Cartwright EM, Brown DD (1974) Sequence studies of the 5S DNA of Xenopus laevis. J Mol Biol 89:703–718CrossRefPubMedGoogle Scholar
  6. Busin CS, Andrade GV, Bertoldo J, Del Grande ML, Uetanabaro M, Recco-Pimentel SM (2008) Cytogenetic analysis of four species of Pseudis (Anura, Hylidae), with the description of ZZ/ZW sex chromosomes in P. tocantins. Genetica 133:119–127Google Scholar
  7. Cassini CS, Cruz CAG, Caramaschi U (2010) Taxonomic review of Physalaemus olfersii (Lichtenstein & Martens, 1856) with revalidation of Physalaemus lateristriga (Steindachner, 1864) and description of two new related species (Anura: Leiuperidae). Zootaxa 2491:1–33 Google Scholar
  8. Cioffi MB, Martins C, Vicari MR, Rebordinos L, Bertollo LAC (2010) Differentiation of the sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): unusual accumulation of repetitive sequences on the X chromosome. Sex Dev 4:176–185CrossRefPubMedGoogle Scholar
  9. Cuevas CC, Formas JR (1996) Heteromorphic sex chromosomes in Eupsophus insularis (Amphibia: Anura: Leptodactylidae). Chromosome Res 4:467–470CrossRefPubMedGoogle Scholar
  10. de Lucca EJ (1974) Chromosomal studies in twelve species of Leptodactylidae and one Brachycephalidae. Caryologia 27:183–191Google Scholar
  11. del Pino EM, Murphy C, Masson PH, Gall JG (1992) 5S rRNA-encoding genes of the marsupial frog Gastrotheca riobambae. Gene 111:235–238CrossRefPubMedGoogle Scholar
  12. Duarte TC, Veiga-Menoncello ACP, Lima JFR, Strüssmann C, Del-Grande ML, Giaretta AA, Pereira EG, Rossa-Feres DC, Recco-Pimentel SM (2010) Chromosome analysis in Pseudopaludicola (Anura, Leiuperidae), with description of sex chromosomes XX/XY in P. saltica. Hereditas 147:43–52CrossRefPubMedGoogle Scholar
  13. Ezaz T, Sarre SD, O′Meally D, Graves JA, Georges A (2009) Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res 127:249–260CrossRefPubMedGoogle Scholar
  14. Fedoroff NV, Brown DD (1978) The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. I. The AT-rich spacer. Cell 13:701–716CrossRefPubMedGoogle Scholar
  15. Frost DR (2010) Amphibian species of the world: an Online Reference. Version 5.4. Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/. American Museum of Natural History, New York, USA. Accessed 17 June 2010
  16. Green DM (1988) Heteromorphic sex chromosomes in the rare and primitive frog Leiopelma hamiltoni from New Zealand. J Heredity 79:165–169Google Scholar
  17. Green DM (2002) Chromosome Polymorphism in Archey’s frogs (Leiopelma archeyi) from New Zealand. Copeia 1:204–207CrossRefGoogle Scholar
  18. Harper ME, Price J, Korn LJ (1983) Chromosomal mapping of Xenopus 5S genes: somatic-type versus oocyte-type. Nucleic Acids Res 11:2313–2323CrossRefPubMedGoogle Scholar
  19. Hayes TB (1998) Sex determination and primary sex differentiation in in amphibians: genetic and developmental mechanisms. J Exp Zool 281:373–399CrossRefPubMedGoogle Scholar
  20. Hillis DM, Green DM (1990) Evolutionary changes of heterogametic sex in the phylogenetic history of amphibians. J Evol Biol 3:49–64CrossRefGoogle Scholar
  21. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015CrossRefPubMedGoogle Scholar
  22. Jacq C, Miller JR, Brownlee GG (1977) A pseudogene structure in 5S DNA of Xenopus laevis. Cell 12:109–120CrossRefPubMedGoogle Scholar
  23. King M (1980) C-banding studies on Australian hylid frogs: secondary constriction structure and the concept of euchromatin transformation. Chromosoma 80:191–217CrossRefGoogle Scholar
  24. Korn LJ, Brown DD (1978) Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eucaryotic genesGoogle Scholar
  25. Martins C, Galetti PM (1999) Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res 7:363–367CrossRefPubMedGoogle Scholar
  26. Martins C, Galetti PM Jr (2001) Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 44:903–910CrossRefPubMedGoogle Scholar
  27. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Willians CR (ed) Focus on genome research. Nova Science Publishers, pp 335–363Google Scholar
  28. Martins C, Wasko AP, Oliveira C, Wright JM (2000) Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus. Hereditas 133:39–46CrossRefPubMedGoogle Scholar
  29. Meunier-Rotival M, Cortadas J, Macaya G, Bernardi G (1979) Isolation and organization of calf ribosomal DNA Nucl Acids Res 6:2109–2123Google Scholar
  30. Milani M, Cassini CS, Recco-Pimentel SM, Lourenço LB (2010) Karyotypic data detect interpopulational variation in Physalaemus olfersii and the first case of supernumerary chromosome in the genus. Animal Biol J 2(1):article 3 (in press)Google Scholar
  31. Miller JR, Cartwright EM, Brownlee GG, Fedoroff NV, Brown DD (1978) The nucleotide sequence of oocyte 5S DNA in Xenopus laevis. II. The GC-rich region. Cell 13:717–725CrossRefPubMedGoogle Scholar
  32. Nakamura M (2009) Sex determination in amphibians. Semin Cell Dev Biol 20:271–282CrossRefPubMedGoogle Scholar
  33. Nanda I, Volff J-N, Weis S, Körting C, Froschauer A, Schmid M, Schartl M (2000) Amplification of a long terminal repeat-like element on the Y chromosome of a platyfish, Xiphophorus maculatus. Chromosoma 109:173–180Google Scholar
  34. Nascimento LB, Caramaschi U, Cruz CAG (2005) Taxonomic review of the species groups of the genus Physalaemus Fitzinger, 1826 with revalidation of the genera Engystomops Jiménez-de-La-Espada, 1872 and Eupemphix Steindachner, 1863 (Amphibia, Anura, Leptodactylidae). Arq Mus Nac Rio de Janeiro 63:297–320Google Scholar
  35. Odierna G, Aprea G, Capriglione T, Castellano S, Balletto E (2007) Cytological evidence for population-specific sex chromosome heteromorphism in Palaearctic green toads (Amphibia, Anura). J Biosci 32:763–768CrossRefPubMedGoogle Scholar
  36. Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, BerlinGoogle Scholar
  37. Oliveira C, Foresti F, Hilsdorf AWS (2009) Genetics of neotropical fish: from chromosomes to populations. Fish Physiol Biochem 35:81–100Google Scholar
  38. Pardue ML, Brown DD, Birnstiel ML (1973) Location of the genes for 5S ribosomal RNA in Xenopus laevis. Chromosoma 42:191–203Google Scholar
  39. Peterson RC, Doering JL, Brown DD (1980) Characterization of two Xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA. Cell 20:131–141CrossRefPubMedGoogle Scholar
  40. Quinderé YRSD, Lourenço LB, Andrade GV, Tomatis C, Baldo D, Recco-Pimentel SM (2009) Polytypic and polymorphic cytogenetic variations in the widespread anuran Physalaemus. Biol Res 42:79–92PubMedGoogle Scholar
  41. Reed KM, Phillips RB (1997) Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Artic char (Salvelinus alpinus) is not sex related. Chromosome Res 5:221–227CrossRefPubMedGoogle Scholar
  42. Schempp W, Schmid M (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83:697–710CrossRefPubMedGoogle Scholar
  43. Schmid M (1978) Chromosome banding in Amphibia I: Constitutive heterochromatin and nucleolus organizers regions in Bufo and Hyla. Chromosoma 66:361–388CrossRefGoogle Scholar
  44. Schmid M (1980) Chromosome bandinf in Amphibia. V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size in Pyxicephalus adspersus (Anura, Ranidae). Chromosoma 80:69–96CrossRefGoogle Scholar
  45. Schmid M, Steinlein C (2001) Sex chromossomoes, sex-linked genes and sex determination in the vertebrate class Amphibia. In: Scherer G, Schmid M (eds) Genes and mechanisms in vertebrate sex determination, 1st edn. Birkhäuser, Basel, pp 143–176Google Scholar
  46. Schmid M, Steinlein C (2003) Chromosome banding in Amphibia. XXIX. The primitive XY/XX sex chromosomes of Hyla femoralis (Anura, Hylidae). Cytogenet Genome Res 101:74–79CrossRefPubMedGoogle Scholar
  47. Schmid M, Olert J, Klett C (1979) Chromosome banding in Amphibia III. Sex chromosomes in Triturus. Chromosoma 71:29–55CrossRefGoogle Scholar
  48. Schmid M, Haaf T, Geile B, Sims S (1983) Chromosome banding in Amphibia. VIII. An unusual XY/XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae). Chromosoma 88:69–82CrossRefPubMedGoogle Scholar
  49. Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in Amphibia. XI Constitutive heterochromatin, nucleolus organizer regions, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95:271–284Google Scholar
  50. Schmid M, Nanda C, Steinlein C, Kausch K, Haaf T (1991) Sex-determining mechanisms and sex chromosomes in Amphibia. In: Green DM, Sessions SK (eds) Amphibian cytogenetics and evolution. Acadamic Press Inc, London, pp 393–430Google Scholar
  51. Schmid M, Ohta S, Steilein C, Guttenbach M (1993) Chromosome banding in Amphibia XIX. Primitive ZW/ZZ sex chromosomes in Buergeria buergeri (Anura, Rhacophoridae). Cytogenet Cell Genet 62:238–246CrossRefPubMedGoogle Scholar
  52. Schmid M, Feichtinger W, Steinlein C, Haaf T, Schartl M, Visbal-García R, Manzanilla-Pupo J, Fernández-Badillo A (2002) Chromosome banding in Amphibia XXVI. Coexistence of homomorphic XY sex chromosome and a derived Y-autosome translocation in Eleutherodactylus maussi (Anura, Leptodactylidae). Cytogenet Genome Res 99:330–343CrossRefPubMedGoogle Scholar
  53. Schmid M, Feichtinger W, Steilein C, Visbal-Carcía R, Fernandez Badillo A (2003) Chromosssome banding in Amphibia XXVIII. Homomorphic XY sex chromosomes and derived Y-autosome translocation in Eleutherodactylus riveroi (Anura, Leptodactylidae). Cytogenet Genome Res 101:62–73CrossRefPubMedGoogle Scholar
  54. Silva APZ, Haddad CFB, Kasahara S (1999) Nucleolus organizer regions in Physalaemus cuvieri (Anura, Leptodactylidae), with evidence of a unique case of Ag-NOR variability. Hereditas 131:135–141CrossRefPubMedGoogle Scholar
  55. Silva APZ, Baldissera FA Jr, Haddad CFB, Kasahara S (2000) Karyotypes and nucleolus organizer regions in four species of the genus Physalaemus, (Anura, Leptodactylidae). Ihering Ser Zool 88:159–164Google Scholar
  56. Singh L, Purdom IF, Jones KW (1976) Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43–62CrossRefPubMedGoogle Scholar
  57. Singh L, Purdom IF, Jones KW (1980) Sex chromosome associated satellite DNA: evolution and conservation. Chromosoma 79:137–157CrossRefPubMedGoogle Scholar
  58. Targueta CP, Rivera M, Souza MB, Recco-Pimentel SM, Lourenço LB (2010) Cytogenetic contributions for the study of the Amazonian Engystomops (Anura; Leiuperidae) assessed in the light of phylogenetic relationships. Mol Phylogenet Evol 54:709–725CrossRefPubMedGoogle Scholar
  59. Tomatis C, Baldo D, Kolenc C, Borteiro C (2009) Chromossomal variations in the species of the Physalaemus henselii group (Anura: Leiuperidae). J Herpetol 43:555–560CrossRefGoogle Scholar
  60. Tsuda Y, Nishida-Umehara C, Ishijima J, Yamada K, Matsuda Y (2007) Comparison of the Z and W sex chromosomal architectures in elegant crested tinamou (Eudromia elegans) and ostrich (Struthio camelus) and the process of sex chromosome differentiation in palaeognathous birds. Chromosoma 116:159–173CrossRefPubMedGoogle Scholar
  61. Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I, Matsuda Y, Nakamura M (2008a) Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana rugosa, Ranidae) with ZW an XY sex chromosome systems. Chromosome Res 16:637–647CrossRefPubMedGoogle Scholar
  62. Uno Y, Nishida C, Yoshimoto S, Ito M, Oshima Y, Yokoyama S, Nakamura M, Matsuda Y (2008b) Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of Ranidae and Xenopodinae. Chromosome Res 16:999–1011CrossRefPubMedGoogle Scholar
  63. Viegas-Péquignot E (1992) In situ hybridization to chromosomes with biotinylated probes. In: Willernson D (ed) In situ hybridization: a practical aproach. Oxford University Press-IRL Press, Oxford, pp 137–158Google Scholar
  64. Vitelli L, Batistoni R, Andronico F, Nardi I, Barsacchi-Pilone G (1982) Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionarily diverse anuran amphibians. Chromosoma 84:475–491Google Scholar
  65. Wiley JE (2003) Replication banding and FISH analysis reveal the origin of the Hyla femoralis karyotype and XY/XX sex chromosomes. Cytogenet Genome Res 101:80–83CrossRefPubMedGoogle Scholar
  66. Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito MA (2008) W-linked DM-domain gene, DM-W participates in primary ovary development in Xenopus laevis. PNAS 105:2469–2474CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Juliana Nascimento
    • 1
  • Yeda Rumi Serra Douglas Quinderé
    • 1
  • Shirlei Maria Recco-Pimentel
    • 1
  • Janaína Reis Ferreira Lima
    • 2
  • Luciana Bolsoni Lourenço
    • 1
  1. 1.Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de BiologiaUniversidade Estadual de Campinas—UNICAMPSão PauloBrazil
  2. 2.Instituto de Pesquisas Científicas e Tecnlógicas do Amapá-IEPA, Núcleo de ZoologiaMacapá, AmapáBrazil

Personalised recommendations