, Volume 138, Issue 8, pp 819–829 | Cite as

Nucleotide diversity of a ND5 fragment confirms that population expansion is the most suitable explanation for the mtDNA haplotype polymorphism of Drosophila subobscura

  • José A. Castro
  • Eladio Barrio
  • Ana González
  • Antònia Picornell
  • Maria Misericòrdia Ramon
  • Andrés Moya
Original Research


Results from mitochondria (mt) DNA restriction site analyses (RSAs) have revealed that wild populations of Drosophila subobscura are formed by two common (I and II) and some rare, often endemic, low-frequency haplotypes. In the study reported here, we analysed nucleotide diversity in a 942-bp fragment of the mtDNA ND5 gene in 48 D. subobscura individuals captured from three populations that showed haplotypes I, II or the less common ones, as well as in one additional individual belonging to D. guanche that was taken as an outgroup. RSAs and sequencing results were compared. The two approaches yielded similar nucleotide variability parameters, suggesting a consistency in the results obtained from mtDNA dynamics in natural populations of D. subobscura. Patterns of polymorphism at ND5 are most consistent with the hypothesis of population expansion after a bottleneck that may have occurred since the last glaciation or which may occur seasonally after the summer and winter. However, we cannot rule out that selection has a role in maintaining the two major haplotypes at intermediate frequencies in worldwide populations of D. subobscura.


ND5 Nucleotide diversity Restriction site analysis mtDNA haplotypes Population expansion D. subobscura D. guanche 



This work was supported by grants PB96-0793 and BOS2000-1000 from the Dirección General de Enseñanza Superior (Ministerio de Educación y Cultura, Spain).


  1. Afonso JM, Volz A, Hernández M, Ruttkay H, González AM, Larruga JM, Cabrera VM (1990) Mitochondrial DNA variation and genetic structure in Old-World populations of Drosophila subobscura. Mol Biol Evol 7:123–142PubMedGoogle Scholar
  2. Ayala FJ, Serra LL, Prevosti A (1989) A grand experiment in evolution: the Drosophila subobscura colonization of the Americas. Genome 31:246–255Google Scholar
  3. Ballard JWO, Melvin RG, Katewa SD, Maas K (2007) Mitochondrial DNA variation is associated with measurable differences in life-history traits and mitochondrial metabolism in Drosophila simulans. Evolution 61:1735–1747CrossRefPubMedGoogle Scholar
  4. Barrio E, Latorre A, Moya A, Ayala FJ (1992) Phylogenetic reconstruction of the Drosophila obscura group, on the basis of mitochondrial DNA. Mol Biol Evol 9:621–635PubMedGoogle Scholar
  5. Bazin E, Glémin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572CrossRefPubMedGoogle Scholar
  6. Castro JA, Ramon M, Picornell A, Moya A (1999) The genetic structure of Drosophila suboscura populations from the islands of Majorca and Minorca (Balearic Islands, Spain) based on allozymes and mitochondrial DNA. Heredity 83:271–279CrossRefPubMedGoogle Scholar
  7. Castro JA, Oliver P, Christie JS, Picornell A, Ramon M, Moya A (2003) Assortative mating and fertility in two Drosophila subobscura strains with different mitochondrial DNA haplotypes. Genetica 119:295–301CrossRefPubMedGoogle Scholar
  8. Christie JS, Castro JA, Oliver P, Picornell A, Ramon MM, Moya A (2004) Fitness and life-history traits of the two major mitochondrial DNA haplotypes of Drosophila subobscura. Heredity 93:371–378CrossRefPubMedGoogle Scholar
  9. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271CrossRefPubMedGoogle Scholar
  10. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  11. Fay JC, Wu CI (2000) Hitchhiking under positive darwinian selection. Genetics 155:1405–1413PubMedGoogle Scholar
  12. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  13. García-Martínez J, Castro JA, Ramón M, Latorre A, Moya A (1998) Mitochondrial DNA haplotype frequencies in natural and experimental populations of Drosophila subobscura. Genetics 149:1377–1382PubMedGoogle Scholar
  14. Gerber AS, Loggins R, Kumar S, Dowling TE (2001) Does non-neutral evolution shape observed patterns of DNA variation in animal mitochondrial genomes? Annu Rev Genet 35:539–566CrossRefPubMedGoogle Scholar
  15. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym Ser 41:95–98Google Scholar
  16. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, pp 21–132Google Scholar
  17. Latorre A, Moya A, Ayala FJ (1986) Evolution of mitochondrial DNA in Drosophila subobscura. Proc Natl Acad Sci USA 83:8649–8653CrossRefPubMedGoogle Scholar
  18. Latorre A, Barrio E, Moya A, Ayala FJ (1988) Mitochondrial DNA evolution in the Drosophila obscura group. Mol Biol Evol 5:717–728PubMedGoogle Scholar
  19. Latorre A, Hernández C, Martínez D, Castro JA, Ramón M, Moya A (1992) Population structure and mitochondrial DNA gene flow in Old World populations of Drosophila suboscura. Heredity 68:15–24CrossRefPubMedGoogle Scholar
  20. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  21. Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349CrossRefPubMedGoogle Scholar
  22. Lynch M, Crease TJ (1990) The analysis of population survey data on DNA sequence variation. Mol Biol Evol 7:377–394PubMedGoogle Scholar
  23. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654CrossRefPubMedGoogle Scholar
  24. Meiklejohn C, Montooth KKL, Rand DM (2007) Positive and negative selection on the mitochondrial genome. Trends Genet 23:259–263CrossRefPubMedGoogle Scholar
  25. Menozzi P, Krimbas CB (1992) The inversion polymorphism of D. subobscura revisited. Synthetic maps of gene arrangement frequencies and their interpretation. J Evol Biol 5:625–641CrossRefGoogle Scholar
  26. Moya A, Barrio E, Martínez D, Latorre A, González-Candelas F, Ramón M, Castro JA (1993) Molecular characterization and cytonuclear disequilibria of two Drosophila subobscura mitochondrial haplotypes. Genome 36:890–898CrossRefPubMedGoogle Scholar
  27. Nachman MW (1998) Deleterious mutations in animal mitochondrial DNA. Genetica 102(103):61–69CrossRefPubMedGoogle Scholar
  28. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  29. Oliver P, Castro JA, Picornell A, Ramon MM, Solé E, Balanyà J, Serra L, Latorre A, Moya A (2002) Linkage disequilibria between mtDNA haplotypes and chromosomal arrangements in a natural population of Drosophila subobscura. Heredity 89:133–138CrossRefPubMedGoogle Scholar
  30. Oliver P, Balanyà J, Ramon MM, Picornell A, Ll Serra, Moya A, Castro JA (2005) Population dynamics of the two majority mitochondrial DNA haplotypes in experimental populations of Drosophila subobscura. Genome 48:1010–1018CrossRefPubMedGoogle Scholar
  31. Pinto FM, Brehm A, Hernandez M, Larruga JM, González AM, Cabrera VM (1997) Population genetic structure and colonization sequence of Drosophila subobscura in the Canaries and Madeira Atlantic islands as inferred by autosomal, sex-linked and mtDNA traits. J Hered 88:108–114PubMedGoogle Scholar
  32. Rand DM, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748PubMedGoogle Scholar
  33. Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  34. Rozas JM, Hernandez M, Cabrera VM, Prevosti A (1990) Colonization of America by Drosophila subobscura: effect of the founder event on the mitochondrial DNA polymorphism. Mol Biol Evol 7:103–109PubMedGoogle Scholar
  35. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • José A. Castro
    • 1
  • Eladio Barrio
    • 2
  • Ana González
    • 2
  • Antònia Picornell
    • 1
  • Maria Misericòrdia Ramon
    • 1
  • Andrés Moya
    • 2
    • 3
    • 4
  1. 1.Laboratori de Genètica, Departament de Biologia, Edifici Guillem Colom, Facultat de CiènciesUniversitat de les Illes BalearsPalma de MallorcaSpain
  2. 2.Institut “Cavanilles” de Biodiversitat i Biologia Evolutiva Universitat de ValènciaValenciaSpain
  3. 3.Centre Superior d’ Investigació en Salut Pública (CSISP)ValenciaSpain
  4. 4.CIBER en Epidemiología y Salud Pública (CIBEResp)ValenciaSpain

Personalised recommendations