, 138:197 | Cite as

Understanding the genetic structure of Symplocos laurina Wall. Populations using nuclear gene markers

  • Sofia Banu
  • R. M. Bhagwat
  • N. Y. Kadoo
  • M. D. Lagu
  • V. S. Gupta


To characterize the genetic diversity of present populations of Symplocos laurina, which grow in the montane forests in India, we analyzed the DNA sequences of a nuclear gene. Using the 881 bp sequence of cytosolic Glyceraldehyde-3-phosphate dehydrogenase gene, we detected 24 haplotypes among 195 individuals sampled from 14 populations. Two dominant haplotypes were distributed over the entire range of this species in India and several private haplotypes were found. Low genetic diversity within population, high differentiation, number of population specific haplotypes and deviation from neutral evolution characterized the present populations of S. laurina. An analysis of molecular variance indicated the presence of geographic structure within the haplotype distribution. The occurrence of S. laurina preglaciation in India is the most parsimonious explanation for the current geographic structure observed. The populations are presumably ancient and might have spread across its extant distribution range in India through a recent range expansion event.


GapC Genetic diversity Glaciation Refugium 



The authors thank Ram Kulkarni from National Chemical Laboratory, Dr. B G Kulkarni and Dr. P S N Rao from Botanical Survey of India, Western Circle, Pune and H S Suresh (Center for Ecological Science, Indian Institute of Science, Bangalore) for the help rendered during sampling. Authors will like to thank Dr. Abhay Harsulkar and Rupali Khadke (Interactive Research School of Health Affairs, Pune) for their help in designing the experiments. We also thank the staff at various field stations and Forest Departments for their co-operation in sampling. We thank Dr. Rebecca Zwart from the National Chemical Laboratory, for her help in refining the manuscript. SB thanks the Council of Scientific and Industrial Research (CSIR), New Delhi for her research fellowship. This project was supported by a grant from the Department of Biotechnology, New Delhi to NCL and BSI.


  1. Abbott RJ, Gomes MF (1989) Population structure and outcrossing rate of Arabidopsis thaliana (L.) Heynh. Heredity 62:411–418CrossRefGoogle Scholar
  2. Almeida SM (1990) The Flora of Savantwadi, Maharashtra, India, vol. 1. Scientific Publishers, Jodhpur, IndiaGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, LondonGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  5. Bonnet E, Van dePeer Y (2002) zt: a software tool for simple and partial Mantel tests. J Stat Soft 7:1–12Google Scholar
  6. Braverman J, Hudson R, Kaplan N et al (1995) The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 140:783–796PubMedGoogle Scholar
  7. Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882CrossRefPubMedGoogle Scholar
  8. Charlesworth B, Morgan MT, Charlesworth D (1993) The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–1303PubMedGoogle Scholar
  9. Cheng YP, Hwang SY, Lin TP (2005) Two potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Mol Ecol 14:2075–2085CrossRefPubMedGoogle Scholar
  10. Chung JD, Lin TP, Tan YC et al (2004) Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in China. Mol Phylogenet Evol 33:791–801CrossRefPubMedGoogle Scholar
  11. Dane F, Liu J, Zhang C (2007) Phylogeography of the bitter apple, Citrullus colocynthis. Genet Resour Crop Ev 54:327–336CrossRefGoogle Scholar
  12. Deshpande AU, Apte GS, Bahulikar RA et al. (2001) Genetic diversity across natural populations of three montane plant species from the Western Ghats, India revealed by intersimple sequence repeats. Mol Ecol 10:2397–2408CrossRefPubMedGoogle Scholar
  13. Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci USA 97:9115–9120CrossRefPubMedGoogle Scholar
  14. Ellstrand NC, Prentice H, Hancock JF (1999) Geneflow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563CrossRefGoogle Scholar
  15. Excoffier L, Smouse PE, Quattro JM (2005) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491Google Scholar
  16. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  17. Gaskin JF, Schaal BA (2002) Hybrid Tamarix widespread in US invasion and undetected in native Asian range. Proc Natl Acad Sci USA 99:11256–11259CrossRefPubMedGoogle Scholar
  18. Gaut BS (1998) Molecular clocks and nucleotide substitution rates in higher plants. Evol Biol 30:93–120Google Scholar
  19. Grant PR, Grant BR (1997) Genetics and origin of bird species. Proc Natl Acad Sci USA 94:7768–7775CrossRefPubMedGoogle Scholar
  20. Griffin SR, Barrett SCH (2004) Post-glacial history of Trillium grandiflorum (Melanthiaceae) in eastern North America: inferences from phylogeography. Am J Bot 91:465–473CrossRefGoogle Scholar
  21. Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706CrossRefGoogle Scholar
  22. Harpending H (1994) Signature of ancient population growth in a low resolution mitochondrial DNA mismatch distribution. Hum Bio 66:591–600Google Scholar
  23. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  24. Holderegger R, Stehlik I, Abbott RJ (2002) Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps. Mol Ecol 11:1409–1418CrossRefPubMedGoogle Scholar
  25. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164PubMedGoogle Scholar
  26. Johannesen J, Lubin Y, Laufs T et al (2005) Dispersal history of a spider (Stegodyphus lineatus) across contiguous deserts: vicariance and range expansion. Biol J Linnean Soc 84:39–754Google Scholar
  27. Johnson KP, Adler FR, Cherry JL (2000) Genetic and phylogenetic consequences of island biogeography. Evolution 54:387–396PubMedGoogle Scholar
  28. Jordan WC, Courtney MW, Neigel JE (1997) Low levels of infraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Am J Bot 83:430–439CrossRefGoogle Scholar
  29. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian Protein Metabolism. Academic Press, New York, pp 21–132Google Scholar
  30. Koehler-Santos P, Lorenz-Lemke AP, Salzano FM et al (2006) Ecological-evolutionary relationships in Passiflora alata from Rio Grande do Sul, Brazil. Braz J Biol 66:809–816CrossRefPubMedGoogle Scholar
  31. Kreitman M (2000) Methods to detect selection in populations with applications to the human. Annu Rev Genomics Hum Genet 1:539–559CrossRefPubMedGoogle Scholar
  32. Kuittinen H, Mattila A, Savolainen O (1997) Genetic variation at marker loci and in quantitative traits in natural populations of Arabidopsis thaliana. Heredity 79:144–152CrossRefPubMedGoogle Scholar
  33. Li WC (1998) The Chinese Quaternary Vegetation and Environment. Science Press, BeijingGoogle Scholar
  34. Meher-Homji VM (1967) Phytogeography of the South Indian hill stations. Bull Torrey Bot Club 94:232–240CrossRefGoogle Scholar
  35. Meher-Homji VM (1972) Himalayan plants on South Indian Hills: role of Pleistocene glaciation vs long distance dispersal. Sci Cult 38:8–12Google Scholar
  36. Meher-Homji VM (1975) On the montane species of Kodaikanal, South India. Phytocoenologia 2:28–39Google Scholar
  37. Morrell PL, Lundy KE, Clegg MT (2003) Distinct geographic patterns of genetic diversity are maintained in wild barley (Hordeum vulgare ssp. spontaneum) despite migration. Proc Natl Acad Sci USA 100:10812–10817CrossRefPubMedGoogle Scholar
  38. Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New YorkGoogle Scholar
  39. Ohta T (2002) Near-neutrality in evolution of genes and gene regulation. Proc Natl Acad Sci USA 99:16134–16137CrossRefPubMedGoogle Scholar
  40. Olsen KM (2002) Population history of Manihot esculenta (Euphorbiaceae) inferred from nuclear DNA sequences. Mol Ecol 11:901–911CrossRefPubMedGoogle Scholar
  41. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591CrossRefPubMedGoogle Scholar
  42. Pérusse JR, Schoen DJ (2004) Molecular evolution of the GapC gene family in Amsinckia spectabilis populations that differ in outcrossing rate. J Mol Evol 59:427–436CrossRefPubMedGoogle Scholar
  43. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedGoogle Scholar
  44. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  45. Rand DM (1996) Neutrality tests of molecular markers and the connection between DNA polymorphism, demography and conservation biology. Conserv Biol 10:665–671CrossRefGoogle Scholar
  46. Richards E, Reichardt M, Rogers S (1994) Preparation of genomic DNA from plant tissues. In: Ausubel EM (ed) Current Protocols in Molecular Biology. John Wiley and Sons, New York, pp 2.3.1–2.3.7Google Scholar
  47. Riddle BR (1996) The molecular phylogeographic bridge between deep and shallow history in continental biotas. Trends Ecol Evol 11:207–211CrossRefGoogle Scholar
  48. Rogers AR, Harpending HC (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  49. Rozas J, Rozas R (1997) DNASP, version 2.0: a novel software package for extensive molecular population genetic analysis. Computer Applied Biosciences 13:307–311Google Scholar
  50. Rozas J, Sanchez-Delbarrio JC, Messeguer X et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  51. Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc Natl Acad Sci USA 97:7024–7029CrossRefPubMedGoogle Scholar
  52. Schaal BA, Hayworth DA, Olsen KM et al (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474CrossRefGoogle Scholar
  53. Schierup MH, Hein J (2000) Consequences of recombination on traditional phylogenetic analysis. Genetics 156:879–891PubMedGoogle Scholar
  54. Shih FL, Hwang SY, Cheng YP et al (2007) Uniform genetic diversity, low differentiation, and neutral evolution characterize contemporary refuge populations of Taiwan fir (Abies Kawakamii, Pinaceae). Am J Bot 94:194–202CrossRefGoogle Scholar
  55. Smith JM, Haigh J (1974) The hitch-hiking effect of a favourable gene. Genet Res 23:23–35CrossRefPubMedGoogle Scholar
  56. Strand AE, Leebens-Mack J, Milligan BG (1997) Nuclear DNA based markers for plant evolutionary biology. Mol Ecol 6:113–118CrossRefPubMedGoogle Scholar
  57. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet 123:585–595Google Scholar
  58. Tani N, Tsumura NY, Sato H (2003) Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from postglacial period. Mol Ecol 12:859–868CrossRefPubMedGoogle Scholar
  59. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  60. Todokoro S, Terauchi R, Kawano S (1995) Microsatellite polymorphisms in natural populations of Arabidopsis thaliana in Japan. Jap J Genet 70:543–554CrossRefGoogle Scholar
  61. Van Rossum F, Bonnin I, Fenart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self incompatible and heavy metal tolerant species. Mol Ecol 13:2959–2967CrossRefPubMedGoogle Scholar
  62. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondria, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058CrossRefPubMedGoogle Scholar
  63. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  64. Wu SH, Hwang CY, Lin TP et al (2006) Contrasting phylogeographic patterns of two closely related species, Machilus thunbergii and Machilus kusanoi (Lauraceae), in Taiwan. J Biogeogr 33:936–947CrossRefGoogle Scholar
  65. Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sofia Banu
    • 1
  • R. M. Bhagwat
    • 1
  • N. Y. Kadoo
    • 1
  • M. D. Lagu
    • 1
  • V. S. Gupta
    • 1
  1. 1.Plant Molecular Biology Group, Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia

Personalised recommendations