Skip to main content
Log in

The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative—a comprehensive collection of transposon-tagged alleles—together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DNA:

Desoxyribonucleic acid

DSB:

Double strand break

MosTIC:

Mos1 transgene induced conversion

PCR:

Polymerase chain reaction

CGC:

Caenorhabditis genetics center

References

  • Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8(7):518–532. doi:10.1038/nrg2105

    Article  PubMed  CAS  Google Scholar 

  • Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105(4):1255–1260. doi:10.1073/pnas.0704963105

    Article  PubMed  CAS  Google Scholar 

  • Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y (2007) High-throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 45(5):307–317. doi:10.1002/dvg.20290

    Article  PubMed  CAS  Google Scholar 

  • Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5(1):62. doi:10.1186/1471-2164-5-62

    Article  PubMed  Google Scholar 

  • Bessereau JL (2006) Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: a method for the rapid identification of mutated genes. Methods Mol Biol 351:59–73

    PubMed  CAS  Google Scholar 

  • Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM (2001) Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413(6851):70–74. doi:10.1038/35092567

    Article  PubMed  CAS  Google Scholar 

  • Bonin CP, Mann RS (2004) A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila. Genetics 167(4):1801–1811. doi:10.1534/genetics.104.027557

    Article  PubMed  CAS  Google Scholar 

  • Boulin T, Bessereau JL (2007) Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protocols 2(5):1276–1287. doi:10.1038/nprot.2007.192

    Article  CAS  Google Scholar 

  • Boulin T, Gielen M, Richmond JE, Williams DC, Paoletti P, Bessereau JL (2008) Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor. Proc Natl Acad Sci USA 105(47):18590–18595. doi:10.1073/pnas.0806933105

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    PubMed  CAS  Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789):959–962. doi:10.1038/35016096

    Article  PubMed  CAS  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483. doi:10.1016/j.cell.2005.07.013

    Article  PubMed  CAS  Google Scholar 

  • Drabek D, Zagoraiou L, de Wit T, Langeveld A, Roumpaki C, Mamalaki C, Savakis C, Grosveld F (2003) Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics 81(2):108–111. doi:10.1016/S0888-7543(02)00030-7

    Article  PubMed  CAS  Google Scholar 

  • Duverger Y, Belougne J, Scaglione S, Brandli D, Beclin C, Ewbank JJ (2007) A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Res 35(2):e11. doi:10.1093/nar/gkl1046

    Article  PubMed  Google Scholar 

  • Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, Bessereau JL (2007) Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J 26(20):4313–4323. doi:10.1038/sj.emboj.7601858

    Article  PubMed  CAS  Google Scholar 

  • Faucheux M, Netter S, Bloyer S, Moussa M, Boissonneau E, Lemeunier F, Wegnez M, Theodore L (2001) Advantages of a P-element construct containing MtnA sequences for the identification of patterning and cell determination genes in Drosophila melanogaster. Mol Genet Genomics 265(1):14–22. doi:10.1007/s004380000391

    Article  PubMed  CAS  Google Scholar 

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19(23):6646. doi:10.1093/nar/19.23.6646

    Article  PubMed  CAS  Google Scholar 

  • Gally C, Eimer S, Richmond JE, Bessereau JL (2004) A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature 431(7008):578–582. doi:10.1038/nature02893

    Article  PubMed  CAS  Google Scholar 

  • Geurts AM, Wilber A, Carlson CM, Lobitz PD, Clark KJ, Hackett PB, McIvor RS, Largaespada DA (2006) Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnol 6:30. doi:10.1186/1472-6750-6-30

    Article  PubMed  Google Scholar 

  • Granger L, Martin E, Segalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32(14):e117. doi:10.1093/nar/gnh111

    Article  PubMed  Google Scholar 

  • Grossman GL, Rafferty CS, Fraser MJ, Benedict MQ (2000) The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae. Insect Biochem Mol Biol 30(10):909–914. doi:10.1016/S0965-1748(00)00092-8

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, McCombs SD (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9(6):605–612. doi:10.1046/j.1365-2583.2000.00227.x

    Article  PubMed  CAS  Google Scholar 

  • Handler AM, McCombs SD, Fraser MJ, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 95(13):7520–7525. doi:10.1073/pnas.95.13.7520

    Article  PubMed  CAS  Google Scholar 

  • Hediger M, Niessen M, Wimmer EA, Dubendorfer A, Bopp D (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10(2):113–119. doi:10.1046/j.1365-2583.2001.00243.x

    Article  PubMed  CAS  Google Scholar 

  • Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163(2):647–661

    PubMed  CAS  Google Scholar 

  • Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C (2000) Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol 9(3):269–275. doi:10.1046/j.1365-2583.2000.00183.x

    Article  PubMed  CAS  Google Scholar 

  • Korswagen HC, Park JH, Ohshima Y, Plasterk RH (1997) An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev 11(12):1493–1503. doi:10.1101/gad.11.12.1493

    Article  PubMed  CAS  Google Scholar 

  • Li X, Lobo N, Bauser CA, Fraser MJ Jr (2001) The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266(2):190–198. doi:10.1007/s004380100525

    Article  PubMed  CAS  Google Scholar 

  • Lobo N, Li X, Fraser MJ Jr (1999) Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261(4–5):803–810. doi:10.1007/s004380050024

    PubMed  CAS  Google Scholar 

  • Lobo N, Li X, Hua-Van A, Fraser MJ Jr (2001) Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus). Mol Genet Genomics 265(1):66–71. doi:10.1007/s004380000388

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen MD, Berghammer AJ, Brown SJ, Denell RE, Klingler M, Beeman RW (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12(5):433–440. doi:10.1046/j.1365-2583.2003.00427.x

    Article  PubMed  CAS  Google Scholar 

  • Loukeris TG, Arca B, Livadaras I, Dialektaki G, Savakis C (1995a) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92(21):9485–9489. doi:10.1073/pnas.92.21.9485

    Article  PubMed  CAS  Google Scholar 

  • Loukeris TG, Livadaras I, Arca B, Zabalou S, Savakis C (1995b) Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270(5244):2002–2005. doi:10.1126/science.270.5244.2002

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka T, Awazu S, Satoh N, Sasakura Y (2004) Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Dev Growth Differ 46(3):249–255. doi:10.1111/j.1440-169X.2004.00742.x

    Article  PubMed  CAS  Google Scholar 

  • Morales ME, Mann VH, Kines KJ, Gobert GN, Fraser MJ Jr, Kalinna BH, Correnti JM, Pearce EJ, Brindley PJ (2007) piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 21(13):3479–3489. doi:10.1096/fj.07-8726com

    Article  PubMed  CAS  Google Scholar 

  • Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135(1):159–169. doi:10.1242/dev.009050

    Article  PubMed  CAS  Google Scholar 

  • Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11):8759–8762. doi:10.1074/jbc.C100766200

    Article  PubMed  CAS  Google Scholar 

  • Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231(2):449–459. doi:10.1002/dvdy.20157

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci USA 102(22):7888–7893. doi:10.1073/pnas.0501101102

    Article  PubMed  CAS  Google Scholar 

  • Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167(2):737–746. doi:10.1534/genetics.103.023085

    Article  PubMed  CAS  Google Scholar 

  • Peloquin JJ, Thibault ST, Staten R, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9(3):323–333. doi:10.1046/j.1365-2583.2000.00194.x

    Article  PubMed  CAS  Google Scholar 

  • Perera OP, Harrell IR, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297. doi:10.1046/j.1365-2583.2002.00336.x

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8):326–332. doi:10.1016/S0168-9525(99)01777-1

    Article  PubMed  CAS  Google Scholar 

  • Ren X, Han Z, Miller TA (2006) Excision and transposition of piggyBac transposable element in tobacco budworm embryos. Arch Insect Biochem Physiol 63(2):49–56. doi:10.1002/arch.20140

    Article  PubMed  CAS  Google Scholar 

  • Robert V, Bessereau JL (2007) Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 26(1):170–183. doi:10.1038/sj.emboj.7601463

    Article  PubMed  CAS  Google Scholar 

  • Robert VJ, Davis MW, Jorgensen EM, Bessereau JL (2008) Gene conversion and end-joining-repair double-strand breaks in the Caenorhabditis elegans germline. Genetics 180(1):673–679. doi:10.1534/genetics.108.089698

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA (2006) Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz 101(7):755–757. doi:10.1590/S0074-02762006000700008

    Article  PubMed  CAS  Google Scholar 

  • Sasakura Y, Awazu S, Chiba S, Kano S, Satoh N (2003) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308:11–20. doi:10.1016/S0378-1119(03)00426-8

    Article  PubMed  CAS  Google Scholar 

  • Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K (2008) Enhancer detection in the ascidian Ciona intestinalis with transposase-expressing lines of Minos. Dev Dyn 237(1):39–50. doi:10.1002/dvdy.21333

    Article  PubMed  CAS  Google Scholar 

  • Score PR, Belur LR, Frandsen JL, Geurts JL, Yamaguchi T, Somia NV, Hackett PB, Largaespada DA, McIvor RS (2006) Sleeping Beauty-mediated transposition and long-term expression in vivo: use of the LoxP/Cre recombinase system to distinguish transposition-specific expression. Mol Ther 13(3):617–624. doi:10.1016/j.ymthe.2005.10.015

    Article  PubMed  CAS  Google Scholar 

  • Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2004) piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46(4):343–349. doi:10.1111/j.1440-169x.2004.00751.x

    Article  PubMed  CAS  Google Scholar 

  • Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M (2003) Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33(4):449–458. doi:10.1016/S0965-1748(03)00009-2

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18(1):81–84. doi:10.1038/71978

    Article  PubMed  CAS  Google Scholar 

  • The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018. doi:10.1126/science.282.5396.2012

    Article  Google Scholar 

  • Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):283–287. doi:10.1038/ng1314

    Article  PubMed  CAS  Google Scholar 

  • Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics 277(3):213–220. doi:10.1007/s00438-006-0176-y

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105(27):9290–9295. doi:10.1073/pnas.0801017105

    Article  PubMed  CAS  Google Scholar 

  • Williams DC, Boulin T, Ruaud AF, Jorgensen EM, Bessereau JL (2005) Characterization of Mos1-mediated mutagenesis in Caenorhabditis elegans: a method for the rapid identification of mutated genes. Genetics 169(3):1779–1785. doi:10.1534/genetics.104.038265

    Article  PubMed  CAS  Google Scholar 

  • Zagoraiou L, Drabek D, Alexaki S, Guy JA, Klinakis AG, Langeveld A, Skavdis G, Mamalaki C, Grosveld F, Savakis C (2001) In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci USA 98(20):11474–11478. doi:10.1073/pnas.201392398

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Shinmyo Y, Hirose A, Mito T, Inoue Y, Ohuchi H, Loukeris TG, Eggleston P, Noji S (2002) Extrachromosomal transposition of the transposable element Minos in embryos of the cricket Gryllus bimaculatus. Dev Growth Differ 44(5):409–417. doi:10.1046/j.1440-169X.2002.00654.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The successful completion of the NemaGENETAG project was made possible through the dedicated and intense efforts of all partners involved. The laboratories of Jean-Louis Bessereau (INSERM, France), Jonathan Ewbank (CNRS, France), Johan Geysen (MAIA Scientific, Belgium), Patricia Kuwabara (University of Bristol, United Kingdom), Laurent Segalat (UCBL, France) and Nektarios Tavernarakis (IMBB-FORTH, Greece) worked closely together towards the objectives of the project. The NemaGENETAG consortium was funded by the EU 6th Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nektarios Tavernarakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bazopoulou, D., Tavernarakis, N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans . Genetica 137, 39–46 (2009). https://doi.org/10.1007/s10709-009-9361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-009-9361-3

Keywords

Navigation