, Volume 137, Issue 1, pp 39–46 | Cite as

The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans

  • Daphne Bazopoulou
  • Nektarios Tavernarakis


The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative—a comprehensive collection of transposon-tagged alleles—together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.


Caenorhabditis elegans Mariner Mos1 Gene tagging Tc1 Transposon 



Desoxyribonucleic acid


Double strand break


Mos1 transgene induced conversion


Polymerase chain reaction


Caenorhabditis genetics center



The successful completion of the NemaGENETAG project was made possible through the dedicated and intense efforts of all partners involved. The laboratories of Jean-Louis Bessereau (INSERM, France), Jonathan Ewbank (CNRS, France), Johan Geysen (MAIA Scientific, Belgium), Patricia Kuwabara (University of Bristol, United Kingdom), Laurent Segalat (UCBL, France) and Nektarios Tavernarakis (IMBB-FORTH, Greece) worked closely together towards the objectives of the project. The NemaGENETAG consortium was funded by the EU 6th Framework Programme.


  1. Antoshechkin I, Sternberg PW (2007) The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8(7):518–532. doi: 10.1038/nrg2105 PubMedCrossRefGoogle Scholar
  2. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105(4):1255–1260. doi: 10.1073/pnas.0704963105 PubMedCrossRefGoogle Scholar
  3. Awazu S, Matsuoka T, Inaba K, Satoh N, Sasakura Y (2007) High-throughput enhancer trap by remobilization of transposon Minos in Ciona intestinalis. Genesis 45(5):307–317. doi: 10.1002/dvg.20290 PubMedCrossRefGoogle Scholar
  4. Balciunas D, Davidson AE, Sivasubbu S, Hermanson SB, Welle Z, Ekker SC (2004) Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5(1):62. doi: 10.1186/1471-2164-5-62 PubMedCrossRefGoogle Scholar
  5. Bessereau JL (2006) Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: a method for the rapid identification of mutated genes. Methods Mol Biol 351:59–73PubMedGoogle Scholar
  6. Bessereau JL, Wright A, Williams DC, Schuske K, Davis MW, Jorgensen EM (2001) Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413(6851):70–74. doi: 10.1038/35092567 PubMedCrossRefGoogle Scholar
  7. Bonin CP, Mann RS (2004) A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila. Genetics 167(4):1801–1811. doi: 10.1534/genetics.104.027557 PubMedCrossRefGoogle Scholar
  8. Boulin T, Bessereau JL (2007) Mos1-mediated insertional mutagenesis in Caenorhabditis elegans. Nat Protocols 2(5):1276–1287. doi: 10.1038/nprot.2007.192 CrossRefGoogle Scholar
  9. Boulin T, Gielen M, Richmond JE, Williams DC, Paoletti P, Bessereau JL (2008) Eight genes are required for functional reconstitution of the Caenorhabditis elegans levamisole-sensitive acetylcholine receptor. Proc Natl Acad Sci USA 105(47):18590–18595. doi: 10.1073/pnas.0806933105 PubMedCrossRefGoogle Scholar
  10. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94PubMedGoogle Scholar
  11. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405(6789):959–962. doi: 10.1038/35016096 PubMedCrossRefGoogle Scholar
  12. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122(3):473–483. doi: 10.1016/j.cell.2005.07.013 PubMedCrossRefGoogle Scholar
  13. Drabek D, Zagoraiou L, de Wit T, Langeveld A, Roumpaki C, Mamalaki C, Savakis C, Grosveld F (2003) Transposition of the Drosophila hydei Minos transposon in the mouse germ line. Genomics 81(2):108–111. doi: 10.1016/S0888-7543(02)00030-7 PubMedCrossRefGoogle Scholar
  14. Duverger Y, Belougne J, Scaglione S, Brandli D, Beclin C, Ewbank JJ (2007) A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Res 35(2):e11. doi: 10.1093/nar/gkl1046 PubMedCrossRefGoogle Scholar
  15. Eimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, Bessereau JL (2007) Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J 26(20):4313–4323. doi: 10.1038/sj.emboj.7601858 PubMedCrossRefGoogle Scholar
  16. Faucheux M, Netter S, Bloyer S, Moussa M, Boissonneau E, Lemeunier F, Wegnez M, Theodore L (2001) Advantages of a P-element construct containing MtnA sequences for the identification of patterning and cell determination genes in Drosophila melanogaster. Mol Genet Genomics 265(1):14–22. doi: 10.1007/s004380000391 PubMedCrossRefGoogle Scholar
  17. Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19(23):6646. doi: 10.1093/nar/19.23.6646 PubMedCrossRefGoogle Scholar
  18. Gally C, Eimer S, Richmond JE, Bessereau JL (2004) A transmembrane protein required for acetylcholine receptor clustering in Caenorhabditis elegans. Nature 431(7008):578–582. doi: 10.1038/nature02893 PubMedCrossRefGoogle Scholar
  19. Geurts AM, Wilber A, Carlson CM, Lobitz PD, Clark KJ, Hackett PB, McIvor RS, Largaespada DA (2006) Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon. BMC Biotechnol 6:30. doi: 10.1186/1472-6750-6-30 PubMedCrossRefGoogle Scholar
  20. Granger L, Martin E, Segalat L (2004) Mos as a tool for genome-wide insertional mutagenesis in Caenorhabditis elegans: results of a pilot study. Nucleic Acids Res 32(14):e117. doi: 10.1093/nar/gnh111 PubMedCrossRefGoogle Scholar
  21. Grossman GL, Rafferty CS, Fraser MJ, Benedict MQ (2000) The piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae. Insect Biochem Mol Biol 30(10):909–914. doi: 10.1016/S0965-1748(00)00092-8 PubMedCrossRefGoogle Scholar
  22. Handler AM, McCombs SD (2000) The piggyBac transposon mediates germ-line transformation in the Oriental fruit fly and closely related elements exist in its genome. Insect Mol Biol 9(6):605–612. doi: 10.1046/j.1365-2583.2000.00227.x PubMedCrossRefGoogle Scholar
  23. Handler AM, McCombs SD, Fraser MJ, Saul SH (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 95(13):7520–7525. doi: 10.1073/pnas.95.13.7520 PubMedCrossRefGoogle Scholar
  24. Hediger M, Niessen M, Wimmer EA, Dubendorfer A, Bopp D (2001) Genetic transformation of the housefly Musca domestica with the lepidopteran derived transposon piggyBac. Insect Mol Biol 10(2):113–119. doi: 10.1046/j.1365-2583.2001.00243.x PubMedCrossRefGoogle Scholar
  25. Horn C, Offen N, Nystedt S, Hacker U, Wimmer EA (2003) piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163(2):647–661PubMedGoogle Scholar
  26. Klinakis AG, Loukeris TG, Pavlopoulos A, Savakis C (2000) Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol Biol 9(3):269–275. doi: 10.1046/j.1365-2583.2000.00183.x PubMedCrossRefGoogle Scholar
  27. Korswagen HC, Park JH, Ohshima Y, Plasterk RH (1997) An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. Genes Dev 11(12):1493–1503. doi: 10.1101/gad.11.12.1493 PubMedCrossRefGoogle Scholar
  28. Li X, Lobo N, Bauser CA, Fraser MJ Jr (2001) The minimum internal and external sequence requirements for transposition of the eukaryotic transformation vector piggyBac. Mol Genet Genomics 266(2):190–198. doi: 10.1007/s004380100525 PubMedCrossRefGoogle Scholar
  29. Lobo N, Li X, Fraser MJ Jr (1999) Transposition of the piggyBac element in embryos of Drosophila melanogaster, Aedes aegypti and Trichoplusia ni. Mol Gen Genet 261(4–5):803–810. doi: 10.1007/s004380050024 PubMedGoogle Scholar
  30. Lobo N, Li X, Hua-Van A, Fraser MJ Jr (2001) Mobility of the piggyBac transposon in embryos of the vectors of Dengue fever (Aedes albopictus) and La Crosse encephalitis (Ae. triseriatus). Mol Genet Genomics 265(1):66–71. doi: 10.1007/s004380000388 PubMedCrossRefGoogle Scholar
  31. Lorenzen MD, Berghammer AJ, Brown SJ, Denell RE, Klingler M, Beeman RW (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12(5):433–440. doi: 10.1046/j.1365-2583.2003.00427.x PubMedCrossRefGoogle Scholar
  32. Loukeris TG, Arca B, Livadaras I, Dialektaki G, Savakis C (1995a) Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc Natl Acad Sci USA 92(21):9485–9489. doi: 10.1073/pnas.92.21.9485 PubMedCrossRefGoogle Scholar
  33. Loukeris TG, Livadaras I, Arca B, Zabalou S, Savakis C (1995b) Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270(5244):2002–2005. doi: 10.1126/science.270.5244.2002 PubMedCrossRefGoogle Scholar
  34. Matsuoka T, Awazu S, Satoh N, Sasakura Y (2004) Minos transposon causes germline transgenesis of the ascidian Ciona savignyi. Dev Growth Differ 46(3):249–255. doi: 10.1111/j.1440-169X.2004.00742.x PubMedCrossRefGoogle Scholar
  35. Morales ME, Mann VH, Kines KJ, Gobert GN, Fraser MJ Jr, Kalinna BH, Correnti JM, Pearce EJ, Brindley PJ (2007) piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. FASEB J 21(13):3479–3489. doi: 10.1096/fj.07-8726com PubMedCrossRefGoogle Scholar
  36. Nagayoshi S, Hayashi E, Abe G, Osato N, Asakawa K, Urasaki A, Horikawa K, Ikeo K, Takeda H, Kawakami K (2008) Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135(1):159–169. doi: 10.1242/dev.009050 PubMedCrossRefGoogle Scholar
  37. Nolan T, Bower TM, Brown AE, Crisanti A, Catteruccia F (2002) piggyBac-mediated germline transformation of the malaria mosquito Anopheles stephensi using the red fluorescent protein dsRED as a selectable marker. J Biol Chem 277(11):8759–8762. doi: 10.1074/jbc.C100766200 PubMedCrossRefGoogle Scholar
  38. Parinov S, Kondrichin I, Korzh V, Emelyanov A (2004) Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 231(2):449–459. doi: 10.1002/dvdy.20157 PubMedCrossRefGoogle Scholar
  39. Pavlopoulos A, Averof M (2005) Establishing genetic transformation for comparative developmental studies in the crustacean Parhyale hawaiensis. Proc Natl Acad Sci USA 102(22):7888–7893. doi: 10.1073/pnas.0501101102 PubMedCrossRefGoogle Scholar
  40. Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167(2):737–746. doi: 10.1534/genetics.103.023085 PubMedCrossRefGoogle Scholar
  41. Peloquin JJ, Thibault ST, Staten R, Miller TA (2000) Germ-line transformation of pink bollworm (Lepidoptera: gelechiidae) mediated by the piggyBac transposable element. Insect Mol Biol 9(3):323–333. doi: 10.1046/j.1365-2583.2000.00194.x PubMedCrossRefGoogle Scholar
  42. Perera OP, Harrell IR, Handler AM (2002) Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient. Insect Mol Biol 11(4):291–297. doi: 10.1046/j.1365-2583.2002.00336.x PubMedCrossRefGoogle Scholar
  43. Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8):326–332. doi: 10.1016/S0168-9525(99)01777-1 PubMedCrossRefGoogle Scholar
  44. Ren X, Han Z, Miller TA (2006) Excision and transposition of piggyBac transposable element in tobacco budworm embryos. Arch Insect Biochem Physiol 63(2):49–56. doi: 10.1002/arch.20140 PubMedCrossRefGoogle Scholar
  45. Robert V, Bessereau JL (2007) Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 26(1):170–183. doi: 10.1038/sj.emboj.7601463 PubMedCrossRefGoogle Scholar
  46. Robert VJ, Davis MW, Jorgensen EM, Bessereau JL (2008) Gene conversion and end-joining-repair double-strand breaks in the Caenorhabditis elegans germline. Genetics 180(1):673–679. doi: 10.1534/genetics.108.089698 PubMedCrossRefGoogle Scholar
  47. Rodrigues FG, Oliveira SB, Rocha BC, Moreira LA (2006) Germline transformation of Aedes fluviatilis (Diptera:Culicidae) with the piggyBac transposable element. Mem Inst Oswaldo Cruz 101(7):755–757. doi: 10.1590/S0074-02762006000700008 PubMedCrossRefGoogle Scholar
  48. Sasakura Y, Awazu S, Chiba S, Kano S, Satoh N (2003) Application of Minos, one of the Tc1/mariner superfamily transposable elements, to ascidian embryos as a tool for insertional mutagenesis. Gene 308:11–20. doi: 10.1016/S0378-1119(03)00426-8 PubMedCrossRefGoogle Scholar
  49. Sasakura Y, Konno A, Mizuno K, Satoh N, Inaba K (2008) Enhancer detection in the ascidian Ciona intestinalis with transposase-expressing lines of Minos. Dev Dyn 237(1):39–50. doi: 10.1002/dvdy.21333 PubMedCrossRefGoogle Scholar
  50. Score PR, Belur LR, Frandsen JL, Geurts JL, Yamaguchi T, Somia NV, Hackett PB, Largaespada DA, McIvor RS (2006) Sleeping Beauty-mediated transposition and long-term expression in vivo: use of the LoxP/Cre recombinase system to distinguish transposition-specific expression. Mol Ther 13(3):617–624. doi: 10.1016/j.ymthe.2005.10.015 PubMedCrossRefGoogle Scholar
  51. Shinmyo Y, Mito T, Matsushita T, Sarashina I, Miyawaki K, Ohuchi H, Noji S (2004) piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Dev Growth Differ 46(4):343–349. doi: 10.1111/j.1440-169x.2004.00751.x PubMedCrossRefGoogle Scholar
  52. Sumitani M, Yamamoto DS, Oishi K, Lee JM, Hatakeyama M (2003) Germline transformation of the sawfly, Athalia rosae (Hymenoptera: Symphyta), mediated by a piggyBac-derived vector. Insect Biochem Mol Biol 33(4):449–458. doi: 10.1016/S0965-1748(03)00009-2 PubMedCrossRefGoogle Scholar
  53. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18(1):81–84. doi: 10.1038/71978 PubMedCrossRefGoogle Scholar
  54. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282(5396):2012–2018. doi: 10.1126/science.282.5396.2012 CrossRefGoogle Scholar
  55. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, Buchholz R, Demsky M, Fawcett R, Francis-Lang HL, Ryner L, Cheung LM, Chong A, Erickson C, Fisher WW, Greer K, Hartouni SR, Howie E, Jakkula L, Joo D, Killpack K, Laufer A, Mazzotta J, Smith RD, Stevens LM, Stuber C, Tan LR, Ventura R, Woo A, Zakrajsek I, Zhao L, Chen F, Swimmer C, Kopczynski C, Duyk G, Winberg ML, Margolis J (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 36(3):283–287. doi: 10.1038/ng1314 PubMedCrossRefGoogle Scholar
  56. Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol Genet Genomics 277(3):213–220. doi: 10.1007/s00438-006-0176-y PubMedCrossRefGoogle Scholar
  57. Wang W, Lin C, Lu D, Ning Z, Cox T, Melvin D, Wang X, Bradley A, Liu P (2008) Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci USA 105(27):9290–9295. doi: 10.1073/pnas.0801017105 PubMedCrossRefGoogle Scholar
  58. Williams DC, Boulin T, Ruaud AF, Jorgensen EM, Bessereau JL (2005) Characterization of Mos1-mediated mutagenesis in Caenorhabditis elegans: a method for the rapid identification of mutated genes. Genetics 169(3):1779–1785. doi: 10.1534/genetics.104.038265 PubMedCrossRefGoogle Scholar
  59. Zagoraiou L, Drabek D, Alexaki S, Guy JA, Klinakis AG, Langeveld A, Skavdis G, Mamalaki C, Grosveld F, Savakis C (2001) In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues. Proc Natl Acad Sci USA 98(20):11474–11478. doi: 10.1073/pnas.201392398 PubMedCrossRefGoogle Scholar
  60. Zhang H, Shinmyo Y, Hirose A, Mito T, Inoue Y, Ohuchi H, Loukeris TG, Eggleston P, Noji S (2002) Extrachromosomal transposition of the transposable element Minos in embryos of the cricket Gryllus bimaculatus. Dev Growth Differ 44(5):409–417. doi: 10.1046/j.1440-169X.2002.00654.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology-Hellas HeraklionGreece

Personalised recommendations