, Volume 136, Issue 2, pp 371–386 | Cite as

Advanced technologies for genomic analysis in farm animals and its application for QTL mapping

  • Xiaoxiang Hu
  • Yu Gao
  • Chungang Feng
  • Qiuyue Liu
  • Xiaobo Wang
  • Zhuo Du
  • Qingsong Wang
  • Ning Li


Rapid progress in farm animal breeding has been made in the last few decades. Advanced technologies for genomic analysis in molecular genetics have led to the identification of genes or markers associated with genes that affect economic traits. Molecular markers, large-insert libraries and RH panels have been used to build the genetic linkage maps, physical maps and comparative maps in different farm animals. Moreover, EST sequencing, genome sequencing and SNPs maps are helping us to understand how genomes function in various organisms and further areas will be studied by DNA microarray technologies and proteomics methods. Because most economically important traits in farm animals are controlled by multiple genes and the environment, the main goal of genome research in farm animals is to map and characterize genes determining QTL. There are two main strategies to identify trait loci, candidate gene association tests and genome scan approaches. In recent years, some new concepts, such as RNAi, miRNA and eQTL, have been introduced into farm animal research, especially for QTL mapping and finding QTN. Several genes that influence important traits have already been identified or are close to being identified, and some of them have been applied in farm animal breeding programs by marker-assisted selection.


QTL mapping Farm animals QTN Genomics Proteomics miRNA Epigenomics Whole genome association 



This work was supported by grants from the National Major Basic Research Development Program, the National High Technology Research and Development Program and the National Natural Science Foundation of China.


  1. Abasht B, Dekkers JC, Lamont SJ (2006) Review of quantitative trait loci identified in the chicken. Poult Sci 85:2079–2096PubMedGoogle Scholar
  2. Abdrakhmanov I, Lodygin D, Geroth P, Arakawa H, Law A, Plachy J, Korn B, Buerstedde JM (2000) A large database of chicken bursal ESTs as a resource for the analysis of vertebrate gene function. Genome Res 10:2062–2069. doi: 10.1101/gr.10.12.2062 PubMedCrossRefGoogle Scholar
  3. Anderson SI, Lopez-Corrales NL, Gorick B, Archibald AL (2000) A large-fragment porcine genomic library resource in a BAC vector. Mamm Genome 11:811–814. doi: 10.1007/s003350010155 PubMedCrossRefGoogle Scholar
  4. Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals. Nat Rev Genet 2:130–138. doi: 10.1038/35052563 PubMedCrossRefGoogle Scholar
  5. Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5:202–212. doi: 10.1038/nrg1294 PubMedCrossRefGoogle Scholar
  6. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, Cui Y (2007) PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res 35:D51–D54. doi: 10.1093/nar/gkl797 PubMedCrossRefGoogle Scholar
  7. Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. doi: 10.1038/35053110 PubMedCrossRefGoogle Scholar
  8. Bishop MD, Kappes SM, Keele JW, Stone RT, Sunden SLF, Hawkins GA, Toldo SS, Fries R, Grosz MD, Yoo J, Beattie CW (1994) A genetic linkage map for cattle. Genetics 136:619–639PubMedGoogle Scholar
  9. Bjornsson HT, Fallin MD, Feinberg AP (2004) An integrated epigenetic and genetic approach to common human disease. Trends Genet 20:350–358. doi: 10.1016/j.tig.2004.06.009 PubMedCrossRefGoogle Scholar
  10. Bohnsack MT, Czaplinski K, Gorlich D (2004) Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10:185–191. doi: 10.1261/rna.5167604 PubMedCrossRefGoogle Scholar
  11. Brem RB, Kruglyak L (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci USA 102:1572–1577. doi: 10.1073/pnas.0408709102 PubMedCrossRefGoogle Scholar
  12. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755. doi: 10.1126/science.1069516 PubMedCrossRefGoogle Scholar
  13. Bumstead N, Palyga J (1992) A preliminary linkage map of the chicken genome. Genomics 13:690–697. doi: 10.1016/0888-7543(92)90143-G PubMedCrossRefGoogle Scholar
  14. Burt DW (2002) Comparative mapping in farm animals. Brief Funct Genomic Proteomic 1:159–168. doi: 10.1093/bfgp/1.2.159 PubMedCrossRefGoogle Scholar
  15. Buske B, Sternstein I, Brockmann G (2006) QTL and candidate genes for fecundity in sows. Anim Reprod Sci 95:167–183. doi: 10.1016/j.anireprosci.2005.12.015 PubMedCrossRefGoogle Scholar
  16. Butler MP, Hanly JA, Moynagh PN (2005) Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38-dependent manner. J Biol Chem 280:27759–27768. doi: 10.1074/jbc.M500756200 PubMedCrossRefGoogle Scholar
  17. Cai L, Taylor JF, Wing RA, Gallagher DS, Woo SS, Davis SK (1995) Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29:413–425. doi: 10.1006/geno.1995.9986 PubMedCrossRefGoogle Scholar
  18. Candille SI, Kaelin CB, Cattanach BM, Yu B, Thompson DA, Nix MA, Kerns JA, Schmutz SM, Millhauser GL, Barsh GS (2007) A β-defensin mutation causes black coat color in domestic dogs. Science 318:1418–1423PubMedCrossRefGoogle Scholar
  19. Caprera A, Lazzari B, Stella A, Merelli I, Caetano AR, Mariani P (2007) GoSh: a web-based database for goat and sheep EST sequences. Bioinformatics 23:1043–1045. doi: 10.1093/bioinformatics/btm063 PubMedCrossRefGoogle Scholar
  20. Carlborg O, Kerje S, Schutz K, Jacobsson L, Jensen P, Andersson L (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421. doi: 10.1101/gr.528003 PubMedCrossRefGoogle Scholar
  21. Carlborg O, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res 83:197–209. doi: 10.1017/S0016672304006779 PubMedCrossRefGoogle Scholar
  22. Carre W, Wang X, Porter TE, Nys Y, Tang J, Bernberg E, Morgan R, Burnside J, Aggrey SE, Simon J, Cogburn LA (2006) Chicken genomics resource: sequencing and annotation of 35, 407 ESTs from single and multiple tissue cDNA libraries and CAP3 assembly of a chicken gene index. Physiol Genomics 25:514–524. doi: 10.1152/physiolgenomics.00207.2005 PubMedCrossRefGoogle Scholar
  23. Chantry-Darmon C, Urien C, de Rochambeau H, Allain D, Pena B, Hayes H, Grohs C, Cribiu EP, Deretz-Picoulet S, Larzul C, Save JC, Neau A, Chardon P, Rogel-Gaillard C (2006) A first-generation microsatellite-based integrated genetic and cytogenetic map for the European rabbit (Oryctolagus cuniculus) and localization of angora and albino. Anim Genet 37:335–341. doi: 10.1111/j.1365-2052.2006.01462.x PubMedCrossRefGoogle Scholar
  24. Charlier C, Coppieters W, Farnir F, Grobet L, Leroy PL, Michaux C, Mni M, Schwers A, Vanmanshoven P, Hanset R et al (1995) The mh gene causing double-muscling in cattle maps to bovine Chromosome 2. Mamm Genome 6:788–792PubMedCrossRefGoogle Scholar
  25. Chen RW, Wang Y, Sun SH, Duan SW (2005) Progress on genetic susceptibility to ankylosing spondylitis. Yi Chuan Xue Bao 32:1108–1114PubMedGoogle Scholar
  26. Chen K, Baxter T, Muir WM, Groenen MA, Schook LB (2007) Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int J Biol Sci 3:153–165PubMedCrossRefGoogle Scholar
  27. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818. doi: 10.1038/ng1810 PubMedCrossRefGoogle Scholar
  28. Cockett NE, Jackson SP, Shay TL, Nielsen D, Moore SS, Steele MR, Barendse W, Green RD, Georges M (1994) Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc Natl Acad Sci USA 91:3019–3023PubMedCrossRefGoogle Scholar
  29. Cockett NE, Shay TL, Smit M (2001) Analysis of the sheep genome. Physiol Genomics 7:69–78PubMedGoogle Scholar
  30. Crawford AM, Dodds KG, Ede AJ, Pierson CA, Montgomery GW, Garmonsway HG, Beattie AE, Davies K, Maddox JF, Kappes SW, Stone RT, Nguyen TC, Penty JM, Lord EA, Broom JE, Buitkamp J, Schwaiger W, Epplen JT, Matthew P, Matthews ME, Hulme DJ, Beh KJ, McGraw RA, Beattie CW (1995) An autosomal genetic linkage map of the sheep genome. Genetics 140:703–724PubMedGoogle Scholar
  31. Crittenden LB, Provencher L, Santangelo L, Levin I, Abplanalp H, Briles RW, Briles WE, Dodgson JB (1993) Characterization of a red jungle fowl by white leghorn backcross reference population for molecular mapping of the chicken genome. Poult Sci 72:334–348Google Scholar
  32. Crooijmans RPMA, Vrebalov J, Dijkhof RJM, van der Poel JJ, Groenen MAM (2000) Two-dimensional screening of the Wageningen chicken BAC library. Mamm Genome 11:360–363. doi: 10.1007/s003350010068 PubMedCrossRefGoogle Scholar
  33. de Koning DJ, Rattink AP, Harlizius B, van Arendonk JA, Brascamp EW, Groenen MA (2000) Genome-wide scan for body composition in pigs reveals important role of imprinting. Proc Natl Acad Sci USA 97:7947–7950. doi: 10.1073/pnas.140216397 PubMedCrossRefGoogle Scholar
  34. de Koning DJ, Cabrera CP, Haley CS (2007) Genetical genomics: combining gene expression with marker genotypes in poultry. Poult Sci 86:1501–1509PubMedGoogle Scholar
  35. Deng XM, Li JY, Li N, Wu CX (2001) Genetic analysis of important growth trait based on F-2 resource population in chicken. Yi Chuan Xue Bao 28:801–807PubMedGoogle Scholar
  36. Dequeant ML, Pourquie O (2005) Chicken genome: new tools and concepts. Dev Dyn 232:883–886. doi: 10.1002/dvdy.20266 PubMedCrossRefGoogle Scholar
  37. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463. doi: 10.1126/science.1135245 PubMedCrossRefGoogle Scholar
  38. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385. doi: 10.1038/ng1909 PubMedCrossRefGoogle Scholar
  39. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463. doi: 10.1038/nature02625 PubMedCrossRefGoogle Scholar
  40. Fadiel A, Anidi I, Eichenbaum KD (2005) Farm animal genomics and informatics: an update. Nucleic Acids Res 33:6308–6318. doi: 10.1093/nar/gki931 PubMedCrossRefGoogle Scholar
  41. Fahrenkrug SC, Rohrer GA, Freking BA, Smith TPL, Osoegawa K, Shu CL, Catanese JJ, de Jong PJ (2001) A porcine BAC library with tenfold genome coverage: a resource for physical and genetic map integration. Mamm Genome 12:472–474. doi: 10.1007/s003350020015 PubMedCrossRefGoogle Scholar
  42. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longmans Green, Harlow, EssexGoogle Scholar
  43. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. doi: 10.1038/35888 PubMedCrossRefGoogle Scholar
  44. Freking BA, Murphy SK, Wylie AA, Rhodes SJ, Keele JW, Leymaster KA, Jirtle RL, Smith TP (2002) Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Res 12:1496–1506. doi: 10.1101/gr.571002 PubMedCrossRefGoogle Scholar
  45. Fujii J, Otsu K, Zorzato F, de Leon S, Khanna V, Weiler J, O'Brien P, MacLennan D (1991) Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253:448–451PubMedCrossRefGoogle Scholar
  46. Gao Y, Hu XX, Deng XM, Feng JD, Li N (2005) Linkage mapping of the SCN8A gene to chicken linkage group E22C19W28. Anim Genet 36:284. doi: 10.1111/j.1365-2052.2005.01302.x PubMedCrossRefGoogle Scholar
  47. Gao Y, Zhang R, Hu XX, Li N (2007) Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci 77:36–45. doi: 10.1016/j.meatsci.2007.03.026 CrossRefGoogle Scholar
  48. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147. doi: 10.1038/415141a PubMedCrossRefGoogle Scholar
  49. Gibbs WW (2003) The unseen genome: beyond DNA. Sci Am 289:106–113PubMedCrossRefGoogle Scholar
  50. Gibson G, Weir B (2005) The quantitative genetics of transcription. Trends Genet 21:616–623. doi: 10.1016/j.tig.2005.08.010 PubMedCrossRefGoogle Scholar
  51. Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni M, Reid S, Simon P, Spelman R, Georges M, Snell R (2002) Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res 12:222–231PubMedCrossRefGoogle Scholar
  52. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17:71–74PubMedCrossRefGoogle Scholar
  53. Grobet L, Poncelet D, Royo LJ, Brouwers B, Pirottin D, Michaux C, Menissier F, Zanotti M, Dunner S, Georges M (1998) Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mamm Genome 9:210–213PubMedCrossRefGoogle Scholar
  54. Groenen MAM, Crooijmans RPMA, Veenendaal A, Cheng HH, Siwek M, van der Poel JJ (1998) A comprehensive microsatellite linkage map of the chicken genome. Genomics 49:265–274. doi: 10.1006/geno.1998.5225 PubMedCrossRefGoogle Scholar
  55. Groenen MAM, Cheng HH, Bumstead N, Benkel BF, Briles WE, Burke T, Burt DW, Crittenden LB, Dodgson J, Hillel J, Lamont S, de Leon AP, Soller M, Takahashi H, Vignal A (2000) A consensus linkage map of the chicken genome. Genome Res 10:137–147PubMedGoogle Scholar
  56. Gunnarsson U, Hellstrom AR, Tixier-Boichard M, Minvielle F, Bed'hom B, Ito S, Jensen P, Rattink A, Vereijken A, Andersson L (2007) Mutations in SLC45A2 cause plumage color variation in chicken and Japanese quail. Genetics 175:867–877PubMedCrossRefGoogle Scholar
  57. Guyonnet-Duperat V, Geverink N, Plastow GS, Evans G, Ousova O, Croisetiere C, Foury A, Richard E, Mormede P, Moisan MP (2006) Functional implication of an Arg307Gly substitution in corticosteroid-binding globulin, a candidate gene for a quantitative trait locus associated with cortisol variability and obesity in pig. Genetics 173:2143–2149. doi: 10.1534/genetics.105.053983 PubMedCrossRefGoogle Scholar
  58. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedGoogle Scholar
  59. Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207PubMedGoogle Scholar
  60. Hamelin M, Sayd T, Chambon C, Bouix J, Bibe B, Milenkovic D, Leveziel H, Georges M, Clop A, Marinova P, Laville E (2006) Proteomic analysis of ovine muscle hypertrophy. J Anim Sci 84:3266–3276. doi: 10.2527/jas.2006-162 PubMedCrossRefGoogle Scholar
  61. Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J, Beattie CW, Schook LB, Alexander LJ (1999) A first-generation porcine whole-genome radiation hybrid map. Mamm Genome 10:824–830. doi: 10.1007/s003359901097 PubMedCrossRefGoogle Scholar
  62. Hedegaard J, Horn P, Lametsch R, Sondergaard Moller H, Roepstorff P, Bendixen C, Bendixen E (2004) UDP-glucose pyrophosphorylase is upregulated in carriers of the porcine RN-mutation in the AMP-activated protein kinase. Proteomics 4:2448–2454. doi: 10.1002/pmic.200300761 PubMedCrossRefGoogle Scholar
  63. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 6:95–108. doi: 10.1038/nrg1521 PubMedCrossRefGoogle Scholar
  64. Hsieh CL (2000) Dynamics of DNA methylation pattern. Curr Opin Genet Dev 10:224–228. doi: 10.1016/S0959-437X(00)00064-2 PubMedCrossRefGoogle Scholar
  65. Hu ZL, Fritz ER, Reecy JM (2007) AnimalQTLdb: a livestock QTL database tool set for positional QTL information mining and beyond. Nucleic Acids Res 35:D604–D609. doi: 10.1093/nar/gkl946 PubMedCrossRefGoogle Scholar
  66. Huang Y, Zhao Y, Haley CS, Hu S, Hao J, Wu C, Li N (2006) A genetic and cytogenetic map for the duck (Anas platyrhynchos). Genetics 173:287–296. doi: 10.1534/genetics.105.053256 PubMedCrossRefGoogle Scholar
  67. Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37:243–253. doi: 10.1038/ng1522 PubMedCrossRefGoogle Scholar
  68. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838. doi: 10.1126/science.1062961 PubMedCrossRefGoogle Scholar
  69. Itoh T, Watanabe T, Ihara N, Mariani P, Beattie CW, Sugimoto Y, Takasuga A (2005) A comprehensive radiation hybrid map of the bovine genome comprising 5593 loci. Genomics 85:413–424. doi: 10.1016/j.ygeno.2004.12.007 CrossRefGoogle Scholar
  70. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254. doi: 10.1038/ng1089 PubMedCrossRefGoogle Scholar
  71. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391. doi: 10.1016/S0168-9525(01)02310-1 PubMedCrossRefGoogle Scholar
  72. Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L (1999) A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158. doi: 10.1038/5938 PubMedCrossRefGoogle Scholar
  73. Jeon JT, Park EW, Jeon HJ, Kim TH, Lee KT, Cheong IC (2003) A large-insert porcine library with sevenfold genome coverage: a tool for positional cloning of candidate genes for major quantitative traits. Mol Cells 16:113–116PubMedGoogle Scholar
  74. Johansson Moller M, Chaudhary R, Hellmen E, Hoyheim B, Chowdhary B, Andersson L (1996) Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome 7:822–830PubMedCrossRefGoogle Scholar
  75. Jungerius BJ, van Laere AS, Te Pas MF, van Oost BA, Andersson L, Groenen MA (2004) The IGF2-intron3-G3072A substitution explains a major imprinted QTL effect on backfat thickness in a Meishan × European white pig intercross. Genet Res 84:95–101. doi: 10.1017/S0016672304007098 PubMedCrossRefGoogle Scholar
  76. Kadarmideen HN, von Rohr P, Janss LL (2006) From genetical genomics to systems genetics: potential applications in quantitative genomics and animal breeding. Mamm Genome 17:548–564. doi: 10.1007/s00335-005-0169-x PubMedCrossRefGoogle Scholar
  77. Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7:910–916PubMedGoogle Scholar
  78. Kappes SM, Keele JW, Stone RT, McGraw RA, Sonstegard TS, Smith TP, Lopez-Corrales NL, Beattie CW (1997) A second-generation linkage map of the bovine genome. Genome Res 7:235–249. doi: 10.1101/gr.7.3.235 PubMedCrossRefGoogle Scholar
  79. Karlsson E, Baranowska I, Wade C, Salmon Hillbertz N, Zody M, Anderson N, Biagi T, Patterson N, Pielberg G, Kulbokas EJ, Comstock K, Keller E, Mesirov J, von Euler H, Kämpe O, Hedhammar A, Lander E, Andersson G, Andersson L, Lindblad-Toh K (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39:1321–1328. doi: 10.1038/ng.2007.10 PubMedCrossRefGoogle Scholar
  80. Kerje S, Lind J, Schutz K, Jensen P, Andersson L (2003) Melanocortin 1-receptor (MC1R) mutations are associated with plumage colour in chicken. Anim Genet 34:241–248PubMedCrossRefGoogle Scholar
  81. Kerje S, Sharma P, Gunnarsson U, Kim H, Bagchi S, Fredriksson R, Schutz K, Jensen P, von Heijne G, Okimoto R, Andersson L (2004) The Dominant white, Dun and Smoky color variants in chicken are associated with insertion/deletion polymorphisms in the PMEL17 gene. Genetics 168:1507–1518PubMedCrossRefGoogle Scholar
  82. Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659. doi: 10.1101/gad.927801 PubMedCrossRefGoogle Scholar
  83. Khatkar MS, Thomson PC, Tammen I, Raadsma HW (2004) Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol 36:163–190. doi: 10.1051/gse:2003057 PubMedCrossRefGoogle Scholar
  84. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216. doi: 10.1016/S0092-8674(03)00801-8 PubMedCrossRefGoogle Scholar
  85. Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293:2269–2271. doi: 10.1126/science.1062039 PubMedCrossRefGoogle Scholar
  86. Knott SA, Marklund L, Haley CS, Andersson K, Davies W, Ellegren H, Fredholm M, Hansson I, Hoyheim B, Lundstrom K, Moller M, Andersson L (1998) Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and large white pigs. Genetics 149:1069–1080PubMedGoogle Scholar
  87. Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98. doi: 10.1038/nature03480 PubMedCrossRefGoogle Scholar
  88. Kumar CG, LeDuc R, Gong G, Roinishivili L, Lewin HA, Liu L (2004) ESTIMA, a tool for EST management in a multi-project environment. BMC Bioinformatics 5:176. doi: 10.1186/1471-2105-5-176 PubMedCrossRefGoogle Scholar
  89. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. doi: 10.1126/science.1064921 PubMedCrossRefGoogle Scholar
  90. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  91. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294:858–862. doi: 10.1126/science.1065062 PubMedCrossRefGoogle Scholar
  92. Laurent P, Schibler L, Vaiman A, Laubier J, Delcros C, Cosseddu G, Vaiman D, Cribiu EP, Yerle M (2007) A 12 000-rad whole-genome radiation hybrid panel in sheep: application to the study of the ovine chromosome 18 region containing a QTL for scrapie susceptibility. Anim Genet 38:358–363. doi: 10.1111/j.1365-2052.2007.01607.x PubMedCrossRefGoogle Scholar
  93. Le Roy P, Naveau J, Elsen JM, Sellier P (1990) Evidence for a new major gene influencing meat quality in pigs. Genet Res 55:33–40PubMedCrossRefGoogle Scholar
  94. Lee RC, Ambros V (2001) An extensive class of small RNAs in Caenorhabditis elegans. Science 294:862–864. doi: 10.1126/science.1065329 PubMedCrossRefGoogle Scholar
  95. Lee SJ, McPherron AC (1999) Myostatin and the control of skeletal muscle mass. Curr Opin Genet Dev 9:604–607. doi: 10.1016/S0959-437X(99)00004-0 PubMedCrossRefGoogle Scholar
  96. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854. doi: 10.1016/0092-8674(93)90529-Y PubMedCrossRefGoogle Scholar
  97. Lee MK, Ren CW, Yan B, Cox B, Zhang HB, Romanov MN, Sizemore FG, Suchyta SP, Peters E, Dodgson JB (2003) Construction and characterization of three BAC libraries for analysis of the chicken genome. Anim Genet 34:151–152. doi: 10.1046/j.1365-2052.2003.00965_5.x PubMedCrossRefGoogle Scholar
  98. Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JA, Hazendonk E, Prins P, Plasterk RH, Jansen RC, Breitling R, Kammenga JE (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2:e222. doi: 10.1371/journal.pgen.0020222 PubMedCrossRefGoogle Scholar
  99. Lindahl G, Enfalt AC, Seth Gv, Joseli A, Hedebro-Velander I, Andersen HJ, Braunschweig M, Andersson L, Lundstrom K (2004a) A second mutant allele (V199I) at the PRKAG3 (RN) locus-II. Effect on colour characteristics of pork loin. Meat Sci 66:621–627. doi: 10.1016/S0309-1740(03)00180-3 CrossRefGoogle Scholar
  100. Lindahl G, Enfalt AC, von Seth G, Josell A, Hedebro-Velander I, Andersen HJ, Braunschweig M, Andersson L, Lundstrom K (2004b) A second mutant allele (V199I) at the PRKAG3 (RN) locus-I. Effect on technological meat quality of pork loin. Meat Sci 66:609–619. doi: 10.1016/S0309-1740(03)00179-7 CrossRefGoogle Scholar
  101. Liu W, Lamont SJ (2003) Candidate gene approach: potentional association of caspase-1, inhibitor of apoptosis protein-1, and prosaposin gene polymorphisms with response to Salmonella enteritidis challenge or vaccination in young chicks. Anim Biotechnol 14:61–76. doi: 10.1081/ABIO-120022136 PubMedCrossRefGoogle Scholar
  102. Liu W, Liu Z, Hu X, Zhang Y, Yuan J, Zhao R, Li Z, Xu W, Gao Y, Deng X, Li N (2003) Construction and characterization of a novel 13.34-fold chicken bacterial artificial chromosome library. Anim Biotechnol 14:145–153. doi: 10.1081/ABIO-120026484 PubMedCrossRefGoogle Scholar
  103. Liu W, Zhang Y, Liu Z, Guo L, Wang X, Fei J, Feng J, Zhao R, Hu X, Li N (2006) A five-fold pig bacterial artificial chromosome library: a resource for positional cloning and physical mapping. Prog Nat Sci 18:889–892. doi: 10.1080/10020070612330085 Google Scholar
  104. MacLennan DH, Duff C, Zorzato F, Fujii J, Phillips M, Korneluk RG, Frodis W, Britt BA, Worton RG (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343:559–561. doi: 10.1038/343559a0 PubMedCrossRefGoogle Scholar
  105. Maddox JF, Davies KP, Crawford AM, Hulme DJ, Vaiman D, Cribiu EP, Freking BA, Beh KJ, Cockett NE, Kang N, Riffkin CD, Drinkwater R, Moore SS, Dodds KG, Lumsden JM, van Stijn TC, Phua SH, Adelson DL, Burkin HR, Broom JE, Buitkamp J, Cambridge L, Cushwa WT, Gerard E, Galloway SM, Harrison B, Hawken RJ, Hiendleder S, Henry HM, Medrano JF, Paterson KA, Schibler L, Stone RT, van Hest B (2001) An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res 11:1275–1289. doi: 10.1101/gr.GR-1350R PubMedCrossRefGoogle Scholar
  106. Marklund S, Kijas J, Rodriguez-Martinez H, Ronnstrand L, Funa K, Moller M, Lange D, Edfors-Lilja I, Andersson L (1998) Molecular basis for the dominant white phenotype in the domestic pig. Genome Res 8:826–833PubMedGoogle Scholar
  107. Maurico JdG, Brad AF, Rachel PC, Steven MK, John WK, Roger TS, Kreg AL, Ken GD, Allan MC, Craig WB (1998) A second-generation linkage map of the sheep genome. Mamm Genome 9:204–209CrossRefGoogle Scholar
  108. McPherron AC, Lee SJ (1997) Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94:12457–12461PubMedCrossRefGoogle Scholar
  109. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90PubMedCrossRefGoogle Scholar
  110. Michaud GA, Snyder M (2002) Proteomic approaches for the global analysis of proteins. Biotechniques 33:1308–1316PubMedGoogle Scholar
  111. Milan D, Bidane JP, Le Roy P, Chevalet C, Woloszyn N, Caritez JC, Gruand J, Lagant H, Bonneau M, Lefaucheur L, Renard C, Vaiman M, Mormede P, Desautes C, Amigues Y, Bourgeois F, Gellin J, Ollivier L (1998) Current status of QTL detection in Large White × Meishan crosses in France. In: Proceeding of the 6th world congress on genetics applied to livestock production, Armidale Australia, vol 26, pp 414–417Google Scholar
  112. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248–1251. doi: 10.1126/science.288.5469.1248 PubMedCrossRefGoogle Scholar
  113. Morisson M, Lemière A, Bosc S, Galan M, Plisson-Petit F, Pinton P, Delcros C, Fève K, Pitel F, Fillon V, Yerle M, Vignal A (2002) ChickRH6: a chicken whole-genome radiation hybrid panel. Genet Sel Evol 34:521–533. doi: 10.1051/gse:2002021 PubMedCrossRefGoogle Scholar
  114. Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS, Cheung VG (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430:743–747. doi: 10.1038/nature02797 PubMedCrossRefGoogle Scholar
  115. Murphy SK, Nolan CM, Huang Z, Kucera KS, Freking BA, Smith TP, Leymaster KA, Weidman JR, Jirtle RL (2006) Callipyge mutation affects gene expression in cis: a potential role for chromatin structure. Genome Res 16:340–346PubMedCrossRefGoogle Scholar
  116. Murrell A, Rakyan VK, Beck S (2005) From genome to epigenome. Hum Mol Genet 14(Spec No 1):R3–R10Google Scholar
  117. Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21:155–156. doi: 10.1038/5935 PubMedCrossRefGoogle Scholar
  118. Nii M, Hayashi T, Mikawa S, Tani F, Niki A, Mori N, Uchida Y, Fujishima-Kanaya N, Komatsu M, Awata T (2005) Quantitative trait loci mapping for meat quality and muscle fiber traits in a Japanese wild boar × Large White intercross. J Anim Sci 83:308–315PubMedGoogle Scholar
  119. Nii M, Hayashi T, Tani F, Niki A, Mori N, Fujishima-Kanaya N, Komatsu M, Aikawa K, Awata T, Mikawa S (2006) Quantitative trait loci mapping for fatty acid composition traits in perirenal and back fat using a Japanese wild boar × Large White intercross. Anim Genet 37:342–347. doi: 10.1111/j.1365-2052.2006.01485.x PubMedCrossRefGoogle Scholar
  120. Otto G, Roehe R, Looft H, Thoelking L, Knap PW, Rothschild MF, Plastow GS, Kalm E (2007) Associations of DNA markers with meat quality traits in pigs with emphasis on drip loss. Meat Sci 75:185–195. doi: 10.1016/j.meatsci.2006.03.022 CrossRefGoogle Scholar
  121. Pandey A, Fernandez MM, Steen H, Blagoev B, Nielsen MM, Roche S, Mann M, Lodish HF (2000) Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J Biol Chem 275:38633–38639. doi: 10.1074/jbc.M007849200 PubMedCrossRefGoogle Scholar
  122. Park HS, Kim SH, Park CS (2006) The role of novel genes in modifying airway responses in asthma. Curr Allergy Asthma Rep 6:112–116. doi: 10.1007/s11882-006-0048-x PubMedCrossRefGoogle Scholar
  123. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726. doi: 10.1038/335721a0 PubMedCrossRefGoogle Scholar
  124. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323. doi: 10.1038/ng1106 PubMedCrossRefGoogle Scholar
  125. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J, Cox AV, Andrews TD, Howe KL, Otto T, Olek A, Fischer J, Gut IG, Berlin K, Beck S (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2:e405. doi: 10.1371/journal.pbio.0020405 PubMedCrossRefGoogle Scholar
  126. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906. doi: 10.1038/35002607 PubMedCrossRefGoogle Scholar
  127. Rocha JL, Pomp D, Van Vleck LD (2002) QTL analysis in livestock. Methods Mol Biol 195:311–346PubMedGoogle Scholar
  128. Rogel-Gaillard C, Piumi F, Billault A, Bourgeaux N, Save J-C, Urien C, Salmon J, Chardon P (2001) Construction of a rabbit bacterial artificial chromosome (BAC) library: application to the mapping of the major histocompatibility complex to position 12q1.1. Mamm Genome 12:253–255. doi: 10.1007/s003350010260 PubMedCrossRefGoogle Scholar
  129. Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A Microsatellite linkage map of the porcine genome. Genetics 136:231–245PubMedGoogle Scholar
  130. Rohrer GA, Alexander LJ, Hu Z, Smith TP, Keele JW, Beattie CW (1996) A comprehensive map of the porcine genome. Genome Res 6:371–391. doi: 10.1101/gr.6.5.371 PubMedCrossRefGoogle Scholar
  131. Rothschild MF (2003) From a sow’s ear to a silk purse: real progress in porcine genomics. Cytogenet Genome Res 102:95–99. doi: 10.1159/000075732 PubMedCrossRefGoogle Scholar
  132. Rothschild MF (2004) Porcine genomics delivers new tools and results: this little piggy did more than just go to market. Genet Res 83:1–6. doi: 10.1017/S0016672303006621 PubMedCrossRefGoogle Scholar
  133. Salmon Hillbertz NH, Isaksson M, Karlsson EK, Hellmen E, Pielberg GR, Savolainen P, Wade CM, von Euler H, Gustafson U, Hedhammar A, Nilsson M, Lindblad-Toh K, Andersson L, Andersson G (2007) Duplication of FGF3, FGF4, FGF19 and ORAOV1 causes hair ridge and predisposition to dermoid sinus in Ridgeback dogs. Nat Genet 39:1318–1320PubMedCrossRefGoogle Scholar
  134. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Bostrom K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Rastam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjogren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336. doi: 10.1126/science.1142358 PubMedCrossRefGoogle Scholar
  135. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302. doi: 10.1038/nature01434 PubMedCrossRefGoogle Scholar
  136. Schibler L, Roig A, Mahé MF, Save JC, Gautier M, Taourit S, Boichard D, Eggen A, Cribiu EP (2004) A first generation bovine BAC-based physical map. Genet Sel Evol 36:105–122. doi: 10.1051/gse:2003054 PubMedCrossRefGoogle Scholar
  137. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688. doi: 10.1056/NEJMoa040933 PubMedCrossRefGoogle Scholar
  138. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345. doi: 10.1126/science.1142382 PubMedCrossRefGoogle Scholar
  139. Seaton G, Haley CS, Knott SA, Kearsey M, Visscher PM (2002) QTL express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18:339–340. doi: 10.1093/bioinformatics/18.2.339 PubMedCrossRefGoogle Scholar
  140. Segre D, Deluna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37:77–83PubMedGoogle Scholar
  141. Shevchenko A, Keller P, Scheiffele P, Mann M, Simons K (1997) Identification of components of trans-Golgi network-derived transport vesicles and detergent-insoluble complexes by nanoelectrospray tandem mass spectrometry. Electrophoresis 18:2591–2600. doi: 10.1002/elps.1150181415 PubMedCrossRefGoogle Scholar
  142. Slof-Op ‘t Landt MC, van Furth EF, Meulenbelt I, Slagboom PE, Bartels M, Boomsma DI, Bulik CM (2005) Eating disorders: from twin studies to candidate genes and beyond. Twin Res Hum Genet 8:467–482PubMedCrossRefGoogle Scholar
  143. Stratil A, Van Poucke M, Bartenschlager H, Knoll A, Yerle M, Peelman LJ, Kopecny M, Geldermann H (2006) Porcine OGN and ASPN: mapping, polymorphisms and use for quantitative trait loci identification for growth and carcass traits in a Meishan × Pietrain intercross. Anim Genet 37:415–418. doi: 10.1111/j.1365-2052.2006.01480.x PubMedCrossRefGoogle Scholar
  144. Sun L, Liu Y, Fremont M, Schwarz S, Siegmann M, Matthies R, Jost JP (1998) A novel 52 kDa protein induces apoptosis and concurrently activates c-Jun N-terminal kinase 1 (JNK1) in mouse C3H10T1/2 fibroblasts. Gene 208:157–166. doi: 10.1016/S0378-1119(97)00626-4 PubMedCrossRefGoogle Scholar
  145. Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115. doi: 10.1126/science.1137045 PubMedCrossRefGoogle Scholar
  146. Suzuki K, Asakawa S, Iida M, Shimanuki S, Fujishima N, Hiraiwa H, Murakami Y, Shimizu N, Yasue H (2000) Construction and evaluation of a porcine bacterial artificial chromosome library. Anim Genet 31:8–12. doi: 10.1046/j.1365-2052.2000.00588.x PubMedCrossRefGoogle Scholar
  147. Takeda H, Caiment F, Smit M, Hiard S, Tordoir X, Cockett N, Georges M, Charlier C (2006) The callipyge mutation enhances bidirectional long-range DLK1-GTL2 intergenic transcription in cis. Proc Natl Acad Sci USA 103(21):8119–8124PubMedCrossRefGoogle Scholar
  148. Taylor JF, Coutinho LL, Herring KL, Gallagher DS Jr, Brenneman RA, Burney N, Sanders JO, Turner JW, Smith SB, Miller RK, Savell JW, Davis SK (1998) Candidate gene analysis of GH1 for effects on growth and carcass composition of cattle. Anim Genet 29:194–201. doi: 10.1111/j.1365-2052.1998.00317.x PubMedCrossRefGoogle Scholar
  149. Tetens J, Goldammer T, Maddox JF, Cockett NE, Leeb T, Drogemuller C (2007) A radiation hybrid map of sheep chromosome 23 based on ovine BAC-end sequences. Anim Genet 38:132–140. doi: 10.1111/j.1365-2052.2007.01572.x PubMedCrossRefGoogle Scholar
  150. Tobin JF, Celeste AJ (2005) Myostatin, a negative regulator of muscle mass: implications for muscle degenerative diseases. Curr Opin Pharmacol 5:328–332. doi: 10.1016/j.coph.2005.01.011 PubMedCrossRefGoogle Scholar
  151. Tuschl T, Borkhardt A (2002) Small interfering RNAs: a revolutionary tool for the analysis of gene function and gene therapy. Mol Interv 2:158–167. doi: 10.1124/mi.2.3.158 PubMedCrossRefGoogle Scholar
  152. Uenishi H, Eguchi-Ogawa T, Shinkai H, Okumura N, Suzuki K, Toki D, Hamasima N, Awata T (2007) PEDE (Pig EST Data Explorer) has been expanded into Pig Expression Data Explorer, including 10 147 porcine full-length cDNA sequences. Nucleic Acids Res 35:D650–D653. doi: 10.1093/nar/gkl954 PubMedCrossRefGoogle Scholar
  153. Vaiman D, Schibler L, Bourgeois F, Oustry A, Amigues Y, Cribiu EP (1996) A genetic linkage map of the male goat genome. Genetics 144:279–305PubMedGoogle Scholar
  154. Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, Cribiu EP (1999) Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome 10:585–587. doi: 10.1007/s003359901049 PubMedCrossRefGoogle Scholar
  155. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836. doi: 10.1038/nature02064 PubMedCrossRefGoogle Scholar
  156. Visscher PM, Thompson R, Haley CS (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics 143:1013–1020PubMedGoogle Scholar
  157. Wallis JW, Aerts J, Groenen MAM, Crooijmans RPMA, Layman D, Graves TA, Scheer DE, Kremitzki C, Fedele MJ, Mudd NK, Cardenas M, Higginbotham J, Carter J, McGrane R, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S-P, Leong S, Chinwalla A, Sekhon M, Wylie K, Dodgson J, Romanov MN, Cheng H, de Jong PJ, Osoegawa K, Nefedov M, Zhang H, McPherson JD, Krzywinski M, Schein J, Hillier L, Mardis ER, Wilson RK, Warren WC (2004) A physical map of the chicken genome. Nature 432:761–764. doi: 10.1038/nature03030 PubMedCrossRefGoogle Scholar
  158. Walter MA, Spillett DJ, Thomas P, Weissenbach J, Goodfellow PN (1994) A method for constructing radiation hybrid maps of whole genomes. Nat Genet 7:22–28. doi: 10.1038/ng0594-22 PubMedCrossRefGoogle Scholar
  159. Wang G, Yan B, Deng X, Li C, Hu X, Li N (2005) Insulin-like growth factor 2 as a candidate gene influencing growth and carcass traits and its bialleleic expression in chicken. Sci China C Life Sci 48:187–194PubMedGoogle Scholar
  160. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20:63–68. doi: 10.1016/j.nut.2003.09.011 PubMedCrossRefGoogle Scholar
  161. Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Wang J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L (2005) Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70. doi: 10.1186/1471-2164-6-70 PubMedCrossRefGoogle Scholar
  162. Whitelaw E, Martin DI (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nat Genet 27:361–365. doi: 10.1038/86850 PubMedCrossRefGoogle Scholar
  163. Winter A, Krämer W, Werner FA, Kollers S, Kata S, Durstewitz G, Buitkamp J, Womack JE, Thaller G, Fries R (2002) Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc Natl Acad Sci USA 99(14):9300–9305. doi: 10.1073/pnas.142293799 Google Scholar
  164. Wong GK, Liu B, Wang J, Zhang Y, Yang X, Zhang Z, Meng Q, Zhou J, Li D, Zhang J, Ni P, Li S, Ran L, Li H, Zhang J, Li R, Li S, Zheng H, Lin W, Li G, Wang X, Zhao W, Li J, Ye C, Dai M, Ruan J, Zhou Y, Li Y, He X, Zhang Y, Wang J, Huang X, Tong W, Chen J, Ye J, Chen C, Wei N, Li G, Dong L, Lan F, Sun Y, Zhang Z, Yang Z, Yu Y, Huang Y, He D, Xi Y, Wei D, Qi Q, Li W, Shi J, Wang M, Xie F, Wang J, Zhang X, Wang P, Zhao Y, Li N, Yang N, Dong W, Hu S, Zeng C, Zheng W, Hao B, Hillier LW, Yang SP, Warren WC, Wilson RK, Brandstrom M, Ellegren H, Crooijmans RP, van der Poel JJ, Bovenhuis H, Groenen MA, Ovcharenko I, Gordon L, Stubbs L, Lucas S, Glavina T, Aerts A, Kaiser P, Rothwell L, Young JR, Rogers S, Walker BA, van Hateren A, Kaufman J, Bumstead N, Lamont SJ, Zhou H, Hocking PM, Morrice D, de Koning DJ, Law A, Bartley N, Burt DW, Hunt H, Cheng HH, Gunnarsson U, Wahlberg P, Andersson L, Kindlund E, Tammi MT, Andersson B, Webber C, Ponting CP, Overton IM, Boardman PE, Tang H, Hubbard SJ, Wilson SA, Yu J, Wang J, Yang H (2004) A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. Nature 432:717–722. doi: 10.1038/nature03156 PubMedCrossRefGoogle Scholar
  165. Wright IA, Rhind SM, Smith AJ, Whyte TK (1992) Effects of body condition and estradiol on luteinizing hormone secretion in post-partum beef cows. Domest Anim Endocrinol 9:305–312. doi: 10.1016/0739-7240(92)90018-S PubMedCrossRefGoogle Scholar
  166. Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998) Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet Cell Genet 82:182–188. doi: 10.1159/000015095 Google Scholar
  167. Zimmer R, Gibbins AMV (1997) Construction and characterization of a large-fragment chicken bacterial artificial chromosome library. Genomics 42:217–226. doi: 10.1006/geno.1997.4738 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xiaoxiang Hu
    • 1
  • Yu Gao
    • 1
  • Chungang Feng
    • 1
  • Qiuyue Liu
    • 1
  • Xiaobo Wang
    • 1
  • Zhuo Du
    • 1
  • Qingsong Wang
    • 1
  • Ning Li
    • 1
  1. 1.State Key Laboratory for AgrobiotechnologyChina Agricultural UniversityBeijingChina

Personalised recommendations