, Volume 136, Issue 1, pp 189–209 | Cite as

Improved prediction of malaria degradomes by supervised learning with SVM and profile kernel

  • Rui Kuang
  • Jianying Gu
  • Hong Cai
  • Yufeng Wang


The spread of drug resistance through malaria parasite populations calls for the development of new therapeutic strategies. However, the seemingly promising genomics-driven target identification paradigm is hampered by the weak annotation coverage. To identify potentially important yet uncharacterized proteins, we apply support vector machines using profile kernels, a supervised discriminative machine learning technique for remote homology detection, as a complement to the traditional alignment based algorithms. In this study, we focus on the prediction of proteases, which have long been considered attractive drug targets because of their indispensable roles in parasite development and infection. Our analysis demonstrates that an abundant and complex repertoire is conserved in five Plasmodium parasite species. Several putative proteases may be important components in networks that mediate cellular processes, including hemoglobin digestion, invasion, trafficking, cell cycle fate, and signal transduction. This catalog of proteases provides a short list of targets for functional characterization and rational inhibitor design.


Malaria Protease Parasite Plasmodium SVM 



Epidermal growth factor receptor


Endoplasmic reticulum


Support vector machine using profile kernels


Open reading frame


Regulated intramembrane proteolysis


Structured based drug design


Serine-repeat antigen


Signal peptide peptidase


Support vector machine



We thank the anonymous reviewers for their constructive comments. We thank PlasmoDB for providing an all-in-one portal for malaria genomic data. The project described is supported by grants 1SC1GM081068, 8SC1AI080579, and R21AI067543 from the National Institute of General Medical Sciences and National Institute of Allergy and Infectious Diseases to Y. Wang. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences, National Institute of Allergy and Infectious Diseases or the National Institutes of Health. YW is also supported by NIH grant G12RR013646, and San Antonio Area Foundation Biomedical Research Funds. RK is supported by Grant-in-Aid of Research, Artistry and Scholarship at University of Minnesota, and the Biomedical Informatics and Computational Biology Seed Grant for UM-Mayo-IBM Collaboration. JG is supported by PSC-CUNY 37 Research Award and Summer Research Award for faculty at College of Staten Island/CUNY.

Supplementary material

10709_2008_9336_MOESM1_ESM.xls (46 kb)
(XLS 46 kb)
10709_2008_9336_MOESM2_ESM.xls (88 kb)
(XLS 87 kb)
10709_2008_9336_MOESM3_ESM.xls (87 kb)
(XLS 87 kb)
10709_2008_9336_MOESM4_ESM.xls (88 kb)
(XLS 88 kb)
10709_2008_9336_MOESM5_ESM.xls (91 kb)
(XLS 91 kb)


  1. Aly AS, Matuschewski K (2005) A malarial cysteine protease is necessary for Plasmodium sporozoite egress from oocysts. J Exp Med 202:225–230. doi: 10.1084/jem.20050545 PubMedCrossRefGoogle Scholar
  2. Arisue N, Hirai M, Arai M, Matsuoka H, Horii T (2007) Phylogeny and evolution of the SERA multigene family in the genus Plasmodium. J Mol Evol 65:82–91. doi: 10.1007/s00239-006-0253-1 PubMedCrossRefGoogle Scholar
  3. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29. doi: 10.1038/75556 PubMedCrossRefGoogle Scholar
  4. Baker RP, Wijetilaka R, Urban S (2006) Two Plasmodium rhomboid proteases preferentially cleave different adhesins implicated in all invasive stages of malaria. PLoS Pathog 2:e113. doi: 10.1371/journal.ppat.0020113 PubMedCrossRefGoogle Scholar
  5. Barale JC, Blisnick T, Fujioka H, Alzari PM, Aikawa M, Braun-Breton C, Langsley G (1999) Plasmodium falciparum subtilisin-like protease 2, a merozoite candidate for the merozoite surface protein 1–42 maturase. Proc Natl Acad Sci USA 96:6445–6450. doi: 10.1073/pnas.96.11.6445 PubMedCrossRefGoogle Scholar
  6. Blackman MJ, Fujioka H, Stafford WH, Sajid M, Clough B, Fleck SL, Aikawa M, Grainger M, Hackett F (1998) A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J Biol Chem 273:23398–23409. doi: 10.1074/jbc.273.36.23398 PubMedCrossRefGoogle Scholar
  7. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003a) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1:E5. doi: 10.1371/journal.pbio.0000005 PubMedCrossRefGoogle Scholar
  8. Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL (2003b) Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4:R9. doi: 10.1186/gb-2003-4-2-r9 PubMedCrossRefGoogle Scholar
  9. Brossier F, Jewett TJ, Sibley LD, Urban S (2005) A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci USA 102:4146–4151. doi: 10.1073/pnas.0407918102 PubMedCrossRefGoogle Scholar
  10. Brown MS, Ye J, Rawson RB, Goldstein JL (2000) Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398. doi: 10.1016/S0092-8674(00)80675-3 PubMedCrossRefGoogle Scholar
  11. Carlton J (2003) The Plasmodium vivax genome sequencing project. Trends Parasitol 19:227–231. doi: 10.1016/S1471-4922(03)00066-7 PubMedCrossRefGoogle Scholar
  12. Carlton JM, Angiuoli SV, Suh BB, Kooij TW, Pertea M, Silva JC, Ermolaeva MD, Allen JE, Selengut JD, Koo HL, Peterson JD, Pop M, Kosack DS, Shumway MF, Bidwell SL, Shallom SJ, van Aken SE, Riedmuller SB, Feldblyum TV, Cho JK, Quackenbush J, Sedegah M, Shoaibi A, Cummings LM, Florens L, Yates JR, Raine JD, Sinden RE, Harris MA, Cunningham DA, Preiser PR, Bergman LW, Vaidya AB, Van Lin LH, Janse CJ, Waters AP, Smith HO, White OR, Salzberg SL, Venter JC, Fraser CM, Hoffman SL, Gardner MJ, Carucci DJ (2002) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512–519. doi: 10.1038/nature01099 PubMedCrossRefGoogle Scholar
  13. Carroll CD, Patel H, Johnson TO, Guo T, Orlowski M, He ZM, Cavallaro CL, Guo J, Oksman A, Gluzman IY, Connelly J, Chelsky D, Goldberg DE, Dolle RE (1998) Identification of potent inhibitors of Plasmodium falciparum plasmepsin II from an encoded statine combinatorial library. Bioorg Med Chem Lett 8:2315–2320. doi: 10.1016/S0960-894X(98)00419-3 PubMedCrossRefGoogle Scholar
  14. Coombs GH, Goldberg DE, Klemba M, Berry C, Kay J, Mottram JC (2001) Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends Parasitol 17:532–537. doi: 10.1016/S1471-4922(01)02037-2 PubMedCrossRefGoogle Scholar
  15. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines. Cambridge University Press, CambridgeGoogle Scholar
  16. Dowse TJ, Pascall JC, Brown KD, Soldati D (2005) Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35:747–756. doi: 10.1016/j.ijpara.2005.04.001 PubMedCrossRefGoogle Scholar
  17. Eggleson KK, Duffin KL, Goldberg DE (1999) Identification and characterization of falcilysin, a metallopeptidase involved in hemoglobin catabolism within the malaria parasite Plasmodium falciparum. J Biol Chem 274:32411–32417. doi: 10.1074/jbc.274.45.32411 PubMedCrossRefGoogle Scholar
  18. Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, Tallon LJ, Delcher AL, Salzberg SL, Silva JC, Haas BJ, Majoros WH, Farzad M, Carlton JM, Smith RK Jr, Garg J, Pearlman RE, Karrer KM, Sun L, Manning G, Elde NC, Turkewitz AP, Asai DJ, Wilkes DE, Wang Y, Cai H, Collins K, Stewart BA, Lee SR, Wilamowska K, Weinberg Z, Ruzzo WL, Wloga D, Gaertig J, Frankel J, Tsao CC, Gorovsky MA, Keeling PJ, Waller RF, Patron NJ, Cherry JM, Stover NA, Krieger CJ, del Toro C, Ryder HF, Williamson SC, Barbeau RA, Hamilton EP, Orias E (2006) Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 4:e286. doi: 10.1371/journal.pbio.0040286 PubMedCrossRefGoogle Scholar
  19. Ersmark K, Samuelsson B, Hallberg A (2006) Plasmepsins as potential targets for new antimalarial therapy. Med Res Rev 26:626–666. doi: 10.1002/med.20082 PubMedCrossRefGoogle Scholar
  20. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/BF01734359 PubMedCrossRefGoogle Scholar
  21. Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A (2008) The Pfam protein families database. Nucleic Acids Res 36:D281–D288. doi: 10.1093/nar/gkm960 PubMedCrossRefGoogle Scholar
  22. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu YM, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ (2002) A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520–526. doi: 10.1038/nature01107 PubMedCrossRefGoogle Scholar
  23. Florens L, Liu X, Wang YF, Yang SG, Schwartz O, Peglar M, Carucci DJ, Yates JR, Wu YM (2004) Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol Biochem Parasitol 135:1–11. doi: 10.1016/j.molbiopara.2003.12.007 PubMedCrossRefGoogle Scholar
  24. Gantt SM, Myung JM, Briones MRS, Li WD, Corey EJ, Omura S, Nussenzweig V, Sinnis P (1998) Proteasome inhibitors block development of Plasmodium spp. Antimicrob Agents Chemother 42:2731–2738PubMedGoogle Scholar
  25. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DMA, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511. doi: 10.1038/nature01097 PubMedCrossRefGoogle Scholar
  26. Goldberg DE (2005) Hemoglobin degradation. Curr Top Microbiol Immunol 295:275–291. doi: 10.1007/3-540-29088-5_11 PubMedCrossRefGoogle Scholar
  27. Gruszynski AE, DeMaster A, Hooper NM, Bangs JD (2003) Surface coat remodeling during differentiation of Trypanosoma brucei. J Biol Chem 278:24665–24672. doi: 10.1074/jbc.M301497200 PubMedCrossRefGoogle Scholar
  28. Hackett F, Sajid M, Withers-Martinez C, Grainger M, Blackman MJ (1999) PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol Biochem Parasitol 103:183–195. doi: 10.1016/S0166-6851(99)00122-X PubMedCrossRefGoogle Scholar
  29. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream MA, Carucci DJ, Yates JRIII, Kafatos FC, Janse CJ, Barrell B, Turner CM, Waters AP, Sinden RE (2005) A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307:82–86. doi: 10.1126/science.1103717 PubMedCrossRefGoogle Scholar
  30. Haque TS, Skillman AG, Lee CE, Habashita H, Gluzman IY, Ewing TJ, Goldberg DE, Kuntz ID, Ellman JA (1999) Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. J Med Chem 42:1428–1440. doi: 10.1021/jm980641t PubMedCrossRefGoogle Scholar
  31. Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278:27781–27788. doi: 10.1074/jbc.M211311200 PubMedCrossRefGoogle Scholar
  32. Hodder AN, Drew DR, Epa VC, Delorenzi M, Bourgon R, Miller SK, Moritz RL, Frecklington DF, Simpson RJ, Speed TP, Pike RN, Crabb BS (2003) Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J Biol Chem 278:48169–48177. doi: 10.1074/jbc.M306755200 PubMedCrossRefGoogle Scholar
  33. Iyer LM, Koonin EV, Aravind L (2004) Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 3:1440–1450PubMedGoogle Scholar
  34. Jaakkola T, Diekhans M, Haussler D (2000) A discriminative framework for detecting remote protein homologies. J Comput Biol 7:95–114. doi: 10.1089/10665270050081405 PubMedCrossRefGoogle Scholar
  35. Jean L, Long M, Young J, Pery P, Tomley F (2001) Aspartyl proteinase genes from apicomplexan parasites: evidence for evolution of the gene structure. Trends Parasitol 17:491–498. doi: 10.1016/S1471-4922(01)02030-X PubMedCrossRefGoogle Scholar
  36. Karplus K, Barrett C, Hughey R (1998) Hidden Markov models for detecting remote protein homologies. Bioinformatics 14:846–856. doi: 10.1093/bioinformatics/14.10.846 PubMedCrossRefGoogle Scholar
  37. Kasam V, Zimmermann M, Maass A, Schwichtenberg H, Wolf A, Jacq N, Breton V, Hofmann-Apitius M (2007) Design of new plasmepsin inhibitors: a virtual high throughput screening approach on the EGEE grid. J Chem Inf Model 47:1818–1828. doi: 10.1021/ci600451t PubMedCrossRefGoogle Scholar
  38. Knop M, Finger A, Braun T, Hellmuth K, Wolf DH (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:753–763PubMedGoogle Scholar
  39. Kuang R, Ie E, Wang K, Wang K, Siddiqi M, Freund Y, Leslie C (2005) Profile-based string kernels for remote homology detection and motif extraction. J Bioinform Comput Biol 3:527–550. doi: 10.1142/S021972000500120X PubMedCrossRefGoogle Scholar
  40. LaCount DJ, Gruszynski AE, Grandgenett PM, Bangs JD, Donelson JE (2003) Expression and function of the Trypanosoma brucei major surface protease (GP63) genes. J Biol Chem 278:24658–24664. doi: 10.1074/jbc.M301451200 PubMedCrossRefGoogle Scholar
  41. Lasonder E, Ishihama Y, Andersen JS, Vermunt AMW, Pain A, Sauerwein RW, Eling WMC, Hall N, Waters AP, Stunnenberg HG, Mann M (2002) Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537–542. doi: 10.1038/nature01111 PubMedCrossRefGoogle Scholar
  42. Le Chat L, Sinden RE, Dessens JT (2007) The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol Biochem Parasitol 153:41–47. doi: 10.1016/j.molbiopara.2007.01.016 PubMedCrossRefGoogle Scholar
  43. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, De La Vega P, Holder AA, Batalov S, Carucci DJ, Winzeler EA (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–1508. doi: 10.1126/science.1087025 PubMedCrossRefGoogle Scholar
  44. Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ, Yates JRIII, Winzeler EA (2004) Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res 14:2308–2318. doi: 10.1101/gr.2523904 PubMedCrossRefGoogle Scholar
  45. Leslie CS, Eskin E, Cohen A, Weston J, Noble WS (2004) Mismatch string kernels for discriminative protein classification. Bioinformatics 20:467–476. doi: 10.1093/bioinformatics/btg431 PubMedCrossRefGoogle Scholar
  46. Li R, Chen X, Gong B, Selzer PM, Li Z, Davidson E, Kurzban G, Miller RE, Nuzum EO, McKerrow JH, Fletterick RJ, Gillmor SA, Craik CS, Kuntz ID, Cohen FE, Kenyon GL (1996) Structure-based design of parasitic protease inhibitors. Bioorg Med Chem 4:1421–1427. doi: 10.1016/0968-0896(96)00136-8 PubMedCrossRefGoogle Scholar
  47. Liao L, Noble WS (2003) Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J Comput Biol 10:857–868. doi: 10.1089/106652703322756113 PubMedCrossRefGoogle Scholar
  48. Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herian M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917. doi: 10.1016/S1097-2765(02)00501-4 PubMedCrossRefGoogle Scholar
  49. Malhotra P, Dasaradhi PV, Kumar A, Mohmmed A, Agrawal N, Bhatnagar RK, Chauhan VS (2002) Double-stranded RNA-mediated gene silencing of cysteine proteases (falcipain-1 and -2) of Plasmodium falciparum. Mol Microbiol 45:1245–1254. doi: 10.1046/j.1365-2958.2002.03105.x PubMedCrossRefGoogle Scholar
  50. McCoubrie JE, Miller SK, Sargeant T, Good RT, Hodder AN, Speed TP, de Koning-Ward TF, Crabb BS (2007) Evidence for a common role for the serine-type Plasmodium falciparum serine repeat antigen proteases: implications for vaccine and drug design. Infect Immun 75:5565–5574. doi: 10.1128/IAI.00405-07 PubMedCrossRefGoogle Scholar
  51. McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–541. doi: 10.1038/nature01633 PubMedCrossRefGoogle Scholar
  52. Meslin B, Barnadas C, Boni V, Latour C, De Monbrison F, Kaiser K, Picot S (2007) Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J Infect Dis 195:1852–1859. doi: 10.1086/518253 PubMedCrossRefGoogle Scholar
  53. Mohmmed A, Dasaradhi PV, Bhatnagar RK, Chauhan VS, Malhotra P (2003) In vivo gene silencing in Plasmodium berghei—a mouse malaria model. Biochem Biophys Res Commun 309:506–511. doi: 10.1016/j.bbrc.2003.08.027 PubMedCrossRefGoogle Scholar
  54. Murata CE, Goldberg DE (2003a) Plasmodium falciparum falcilysin: a metalloprotease with dual specificity. J Biol Chem 278:38022–38028. doi: 10.1074/jbc.M306842200 PubMedCrossRefGoogle Scholar
  55. Murata CE, Goldberg DE (2003b) Plasmodium falciparum falcilysin: an unprocessed food vacuole enzyme. Mol Biochem Parasitol 129:123–126. doi: 10.1016/S0166-6851(03)00098-7 PubMedCrossRefGoogle Scholar
  56. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540PubMedGoogle Scholar
  57. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi: 10.1006/jmbi.2000.4042 PubMedCrossRefGoogle Scholar
  58. Nyborg AC, Ladd TB, Jansen K, Kukar T, Golde TE (2006) Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB J 20:1671–1679. doi: 10.1096/fj.06-5762com PubMedCrossRefGoogle Scholar
  59. O’Donnell RA, Hackett F, Howell SA, Treeck M, Struck N, Krnajski Z, Withers-Martinez C, Gilberger TW, Blackman MJ (2006) Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174:1023–1033. doi: 10.1083/jcb.200604136 PubMedCrossRefGoogle Scholar
  60. Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ (2006) Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathog 2:e117. doi: 10.1371/journal.ppat.0020117 PubMedCrossRefGoogle Scholar
  61. Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, Goldberg DE (2007) A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol 63:314–334. doi: 10.1111/j.1365-2958.2006.05443.x PubMedCrossRefGoogle Scholar
  62. Powers JC, Asgian JL, Ekici OD, James KE (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750. doi: 10.1021/cr010182v PubMedCrossRefGoogle Scholar
  63. Puente XS, Gutierrez-Fernandez A, Ordonez GR, Hillier LW, Lopez-Otin C (2005) Comparative genomic analysis of human and chimpanzee proteases. Genomics 86:638–647. doi: 10.1016/j.ygeno.2005.07.009 PubMedCrossRefGoogle Scholar
  64. Ramasamy G, Gupta D, Mohmmed A, Chauhan VS (2007) Characterization and localization of Plasmodium falciparum homolog of prokaryotic ClpQ/HslV protease. Mol Biochem Parasitol 152:139–148. doi: 10.1016/j.molbiopara.2007.01.002 PubMedCrossRefGoogle Scholar
  65. Rangwala H, Karypis G (2005) Profile-based direct kernels for remote homology detection and fold recognition. Bioinformatics 21:4239–4247. doi: 10.1093/bioinformatics/bti687 PubMedCrossRefGoogle Scholar
  66. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ (2008) MEROPS: the peptidase database. Nucleic Acids Res 36:D320–D325. doi: 10.1093/nar/gkm954 PubMedCrossRefGoogle Scholar
  67. Rosenthal PJ (2002) Hydrolysis of erythrocyte proteins by proteases of malaria parasites. Curr Opin Hematol 9:140–145. doi: 10.1097/00062752-200203000-00010 PubMedCrossRefGoogle Scholar
  68. Rosenthal PJ (2004) Cysteine proteases of malaria parasites. Int J Parasitol 34:1489–1499. doi: 10.1016/j.ijpara.2004.10.003 PubMedCrossRefGoogle Scholar
  69. Rosenthal PJ, Sijwali PS, Singh A, Shenai BR (2002) Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des 8:1659–1672. doi: 10.2174/1381612023394197 PubMedCrossRefGoogle Scholar
  70. Scheidt KA, Roush WR, McKerrow JH, Selzer PM, Hansell E, Rosenthal PJ (1998) Structure-based design, synthesis and evaluation of conformationally constrained cysteine protease inhibitors. Bioorg Med Chem 6:2477–2494. doi: 10.1016/S0968-0896(98)80022-9 PubMedCrossRefGoogle Scholar
  71. Sharma A (2007) Malarial protease inhibitors: potential new chemotherapeutic agents. Curr Opin Investig Drugs 8:642–652PubMedGoogle Scholar
  72. Shenai BR, Sijwali PS, Singh A, Rosenthal PJ (2000) Characterization of native and recombinant falcipain-2, a principal trophozoite cysteine protease and essential hemoglobinase of Plasmodium falciparum. J Biol Chem 275:29000–29010. doi: 10.1074/jbc.M004459200 PubMedCrossRefGoogle Scholar
  73. Shenai BR, Semenov AV, Rosenthal PJ (2002) Stage-specific antimalarial activity of cysteine protease inhibitors. Biol Chem 383:843–847. doi: 10.1515/BC.2002.089 PubMedCrossRefGoogle Scholar
  74. Sijwali PS, Rosenthal PJ (2004) Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc Natl Acad Sci USA 101:4384–4389. doi: 10.1073/pnas.0307720101 PubMedCrossRefGoogle Scholar
  75. Sijwali PS, Shenai BR, Gut J, Singh A, Rosenthal PJ (2001) Expression and characterization of the Plasmodium falciparum haemoglobinase falcipain-3. Biochem J 360:481–489. doi: 10.1042/0264-6021:3600481 PubMedCrossRefGoogle Scholar
  76. Sijwali PS, Koo J, Singh N, Rosenthal PJ (2006) Gene disruptions demonstrate independent roles for the four falcipain cysteine proteases of Plasmodium falciparum. Mol Biochem Parasitol 150:96–106. doi: 10.1016/j.molbiopara.2006.06.013 PubMedCrossRefGoogle Scholar
  77. Southan C (2001) A genomic perspective on human proteases. FEBS Lett 498:214–218. doi: 10.1016/S0014-5793(01)02490-5 PubMedCrossRefGoogle Scholar
  78. Suthram S, Sittler T, Ideker T (2005) The Plasmodium protein network diverges from those of other eukaryotes. Nature 438:108–112. doi: 10.1038/nature04135 PubMedCrossRefGoogle Scholar
  79. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  80. Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107:173–182. doi: 10.1016/S0092-8674(01)00525-6 PubMedCrossRefGoogle Scholar
  81. Urban S, Schlieper D, Freeman M (2002) Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr Biol 12:1507–1512. doi: 10.1016/S0960-9822(02)01092-8 PubMedCrossRefGoogle Scholar
  82. Vapnik VN (1998) Statistical learning theory. Adaptive and learning systems for signal processing, communications, and control. Wiley, New YorkGoogle Scholar
  83. Wang Y, Wu Y (2004) Computer assisted searches for drug targets with emphasis on malarial proteases and their inhibitors. Curr Drug Targets Infect Disord 4:25–40. doi: 10.2174/1568005043480952 PubMedCrossRefGoogle Scholar
  84. Wang Y, Zhang Y, Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. Nature 444:179–180. doi: 10.1038/nature05255 PubMedCrossRefGoogle Scholar
  85. Withers-Martinez C, Jean L, Blackman MJ (2004) Subtilisin-like proteases of the malaria parasite. Mol Microbiol 53:55–63. doi: 10.1111/j.1365-2958.2004.04144.x PubMedCrossRefGoogle Scholar
  86. Wu YM, Wang XY, Liu X, Wang YF (2003) Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite. Genome Res 13:601–616. doi: 10.1101/gr.913403 PubMedCrossRefGoogle Scholar
  87. Yeoh S, O’Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ (2007) Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 131:1072–1083. doi: 10.1016/j.cell.2007.10.049 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaTwin Cities, MinneapolisUSA
  2. 2.Department of BiologyCollege of Staten Island/City University of New YorkStaten IslandUSA
  3. 3.Department of BiologyUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations