, Volume 135, Issue 2, pp 169–183 | Cite as

A striking lack of genetic diversity across the wide-ranging amphibian Gastrophryne carolinensis (Anura: Microhylidae)

  • Robert Makowsky
  • Jason Chesser
  • Leslie J. Rissler


We examine phylogeographic structure across a wide-ranging microhylid frog (Gastrophryne carolinensis) using both mitochondrial (mtDNA) and nuclear (AFLP) data. Species with similar ecological characteristics such as large range size, low vagility, or existence across known biogeographic barriers, often are comprised of multiple, cryptic lineages. Surprisingly, our analyses of both portions of the genome show very little phylogeographic or population genetic structure. The family Microhylidae is one of the largest families of anurans with over 60 genera and around 400 species distributed across much of the world (Americas, Asia, Africa, and Madagascar), but very few phylogeographic studies have assessed intraspecific genetic diversity across the mitochondrial and nuclear genomes. Our results suggest that G. carolinensis, one of only three species of microhylid native to the US, has experienced a severe population bottleneck with subsequent range expansion. Comparable molecular data from closely related microhylids, in addition to demographic and ecological analyses, will provide valuable insight into patterns of genetic diversity and the processes driving phylogeographic diversity in these wide-ranging frogs.


AFLP Gastrophryne Microhylidae mtDNA Phylogeography Southeastern U.S. 



Amplified fragment length polymorphism


Intersimple sequence repeat


The World Conservation Union


Species of least concern








Maximum parsimony


Mitochondrial DNA








Principal coordinate analysis


Random amplification of polymorphic DNA

cyt b

Cytochrome b


Nicotinamide adenine dinucleotide dehydrogenase subunit 4


Transfer RNA



We are grateful to the following individuals and institutions for their gracious contribution of tissue samples: Z. Ceviron, C. Austin, and R. Brumfield (Louisiana State University Museum of Natural History), T. LaDuc (Texas Natural History Collections), K. Ashton (Archbold Biological Station), and S. Trauth (Arknsas State University). For field help we thank A. Braswell, S. Trauth and his students, J. Apodaca, C. Winne, J. D. Wilson, M. Watson, M. Welker, C. Cox, and C. Makowsky. W. Holzenagel was instrumental in assisting with genetic analyses, and P. Chippindale assisted with analyses. We also thank two anonymous reviewers for helpful comments on this manuscript. Funding was provided by the National Science Foundation (DEB 0414033 and DBI 04-571) to LJR and the University of Alabama.


  1. Althoff DM, Gitzendanner MA, Segraves KA (2007) The utility of amplified fragment length polymorphisms in phylogenetics: a comparison of homology within and between genomes. Syst Biol 56:477–484PubMedCrossRefGoogle Scholar
  2. Austin JD, Lougheed SC, Neidrauer L, Chek AA, Boag PT (2002) Cryptic lineages in a small frog: the post-glacial history of the spring peeper, Pseudacris crucifer (Anura: Hylidae). Mol Phylogenet Evol 25:316–329PubMedCrossRefGoogle Scholar
  3. Austin JD, Lougheed SC, Boag PT (2004) Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol Phylogenet Evol 32:799–816PubMedCrossRefGoogle Scholar
  4. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  5. Avise J (2000) Phylogeography. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  6. Awbrey F (1965) An experimental investigation of the effectiveness of anuran mating calls as isolation mechanisms. Dept Biol, Austin, U TexasGoogle Scholar
  7. Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  8. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and of their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedCrossRefGoogle Scholar
  9. Bensch S, Akesson M (2005) Ten years of ALFP in ecology and evolution: why so few animals. Mol Ecol 14:2899–2914PubMedCrossRefGoogle Scholar
  10. Berendzen P, Simons A, Wood R (2003) Phylogeography of the northern hogsucker, Hypentelium nigricans (Teleostei: Cypriniformes): genetic evidence for the evidence of the ancient Teays River. J Biogeogr 30:1139–1152CrossRefGoogle Scholar
  11. Bermingham E, Moritz C (1998) Comparative phylogeography: concepts and applications. Mol Ecol 7:367–369CrossRefGoogle Scholar
  12. Berres ME, Engels WR, Kirsch JAW (in review) A method for genotyping ostensibly dominant markers in AFLP fingerprints. GeneticsGoogle Scholar
  13. Blair W (1955) Size difference as a possible isolation mechanism in Microhyla. Am Nat 89:297–301CrossRefGoogle Scholar
  14. Brant SV, Orti G (2003) Phylogeography of the northern short-tailed shrew, Blarina brevicauda (Insectivora: Soricidae): past fragmentation and postglacial recolonization. Mol Ecol 12:1435–1449PubMedCrossRefGoogle Scholar
  15. Brede EG, Beebee TJC (2006) Large variations in the ratio of effective breeding and census population sizes between two species of pond-breeding anurans. Biol J Linn Soc 89:365–372CrossRefGoogle Scholar
  16. Burbrink FT (2002) Phylogeographic analysis of the cornsnake (Elaphe guttata) complex inferred from maximum likelihood and Bayesian analyses. Mol Phylogenet Evol 25:465–476PubMedCrossRefGoogle Scholar
  17. Burbrink FT, Lawson R, Slowinski JB (2000) Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution 54:2107–2118PubMedGoogle Scholar
  18. Bussell JD, Waycott M, Chappill JA (2005) Arbitrarily amplified DNA markers as characters for phylogenetic inference. Perspect Plant Ecol Evol Syst 7:3–26CrossRefGoogle Scholar
  19. Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991PubMedCrossRefGoogle Scholar
  20. Carvalho ALd (1954) A preliminary synopsis of the genera of American Microhylid frogs. Occas Pap Mus Zool Univ Mich 555:1–19Google Scholar
  21. Case SM, Haneline PG, Smith MF (1975) Protein variation in several species of Hyla. Syst Zool 24:281–295CrossRefGoogle Scholar
  22. Casgrain P, Legendre P (2001) The R Package for multivariate and spatial analysis version 4.0d5 – User’s manual. Département de sciences biologiques, Université de Montreal, Montreal. URL:
  23. Castoe TA, Spencer CL, Parkinson CL (2007) Phylogeographic structure and historical demography of the western diamondback rattlesnake (Crotalus atrox): a perspective on North American desert biogeography. Mol Phylogenet Evol 42:193–212PubMedCrossRefGoogle Scholar
  24. Chiang YC, Schaal BA, Ge XJ, Chiang TY (2004) Range expansion leading to departures from neutrality in the nonsymbiotic hemoglobin gene and the cpDNA trnL-trnF intergenic spacer in Trema dielsiana (Ulmaceae). Mol Phylogenet Evol 31:929–942PubMedCrossRefGoogle Scholar
  25. Conant R, Collins JT (1998) A field guide to reptiles and amphibians: Eastern and Central North America. Houghton Mifflin, BostonGoogle Scholar
  26. Creer S, Thorpe RS, Malhotra A, Chou WH, Stenson AG (2004) The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. J Evol Biol 17:100–107PubMedCrossRefGoogle Scholar
  27. Curtis JMR, Taylor EB (2004) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54CrossRefGoogle Scholar
  28. Degnan SM (1993) The perils of single-gene trees-mitochondrial versus single-copy nuclear-DNA variation in white-eyes (Aves, Zosteropidae). Mol Ecol 2:219–225CrossRefGoogle Scholar
  29. Dodd CK (1996) Use of terrestrial habitats by amphibians in the sandhill uplands of north-central Florida. Alytes 14:42–52Google Scholar
  30. Donnelly M, de Sá RO, Guyer C (1990) Description of the tadpoles of Gastrophryne pictiventris and Nelsonophryne aterrima (Anura: Microhylidae), with a review of morphological variation in free-swimming Microhylid Larvae. Am Mus Novit 2976:1–19Google Scholar
  31. Downie D (2004) Phylogeography in a galling insect, grape phylloxera, Daktulosphaira vitifoliae (Phylloxeridae) in the fragmented habitat of the Southwest USA. J Biogeogr 31:1759–1768CrossRefGoogle Scholar
  32. Dragoo JW, Lackey JA, Moore KE, Lessa EP, Cook JA, Yates TL (2006) Phylogeography of the deer mouse (Peromyscus maniculatus) provides a predictive framework for research on hantaviruses. J Gen Virol 87:1997–2003PubMedCrossRefGoogle Scholar
  33. Duellman WE, Trueb L (1986) Biology of amphibians. Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Edwards S, Berrli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMedGoogle Scholar
  35. Ford LS, Cannatella DC (1993) The major clades of frogs. Herpetol Monogr 7:94–117CrossRefGoogle Scholar
  36. Frost DR (ed) (1985) Amphibian species of the world. A taxonomic and geographical reference. Association of Systematics Collections and Allen Press, Lawrence, KansasGoogle Scholar
  37. Frost D, Grant T, Faivovich J, Bain R, Haas A, Haddad C, de Sa R, Channing A, Wilkinson M, Donnellan S, Raxworthy C, Campbell J, Blotto B, Moler P, Drewes R, Nussbaum R, Lynch J, Green D, Wheeler W (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370CrossRefGoogle Scholar
  38. Galtier N, Boursot P (2000) A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs divergence patterns in mouse mitochondrial control region. J Mol Evol 50:224–231PubMedGoogle Scholar
  39. Giannasi N, Thorpe RS, Malhotra A (2001) The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol Ecol 10:419–426PubMedCrossRefGoogle Scholar
  40. Goldberg CS, Sullivan BK, Malone JH, Schwalbe CR (2004) Divergence among barking frogs (Eleutherodactylus augusti) in the southwestern United States. Herpetologica 60:312–320CrossRefGoogle Scholar
  41. Groot TVM, Bruins E, Breeuwer JAJ (2003) Molecular genetic evidence for parthenogenesis in the Burmese python, Python molurus bivittatus. Heredity 90:130–135PubMedCrossRefGoogle Scholar
  42. Hahn V (2002) Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Res 77:153–159CrossRefGoogle Scholar
  43. Hare MP (2001) Prospects for nuclear gene phylogeography. Trends Ecol Evol 16:700–706CrossRefGoogle Scholar
  44. Hickerson M, Meyer C, Moritz C (2006). DNA barcoding will often fail to discover new animal species over broad parameter space. Syst Biol 55:729–739PubMedCrossRefGoogle Scholar
  45. Hoffman EA, Blouin MS (2004) Evolutionary history of the northern leopard frog: reconstruction of phylogeny, phylogeography, and historical changes in population demography from mitochondrial DNA. Evolution 58:145–159PubMedGoogle Scholar
  46. Holbrook JE (1836) North American herpetology. J. Dobson Publishers, Pennsylvania, PhiladelphiaGoogle Scholar
  47. Howes BJ, Lindsay B, Lougheed SC (2006) Range-wide phylogeography of a temperate lizard, the five-lined skink (Eumeces fasciatus). Mol Phylogenet Evol 40:183PubMedCrossRefGoogle Scholar
  48. Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  49. Jaeger JR, Riddle BR, Bradford DF (2005) Cryptic Neogene vicariance and Quaternary dispersal of the red-spotted toad (Bufo punctatus): insights on the evolution of North American warm desert biotas. Mol Ecol 14:3033–3048PubMedCrossRefGoogle Scholar
  50. Janzen F, Krenz J, Haselkorn T, Brodie E, Brodie E (2002) Molecular phylogeography of the common garter snakes (Thamnophis sirtalis) in western North America: implications for regional historical forces. Mol Ecol 11:1739–1751PubMedCrossRefGoogle Scholar
  51. Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hodl W, Burke T (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 3:526–528PubMedCrossRefGoogle Scholar
  52. Joseph L, Wilke T, Alpers D (2003) Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s flycatcher (Myiarchus swainsoni). J Biogeogr 60:925–937CrossRefGoogle Scholar
  53. Kasapidis P, Magoulas A, Mylonas M, Zouros E (2005) The phylogeography of the gecko Cyrtopodion kotschyi (Reptilia: Gekkonidae) in the Aegean archipelago. Mol Phylogenet Evol 35:612–623PubMedCrossRefGoogle Scholar
  54. Kinkead K, Abbott A, Otis D (2007) Genetic variation among Ambystoma breeding populations on the Savannah River Site. Conserv Genet 8:281–292CrossRefGoogle Scholar
  55. Klutsch CFC, Misof B, Grosse WR, Moritz RFA (2007) Genetic and morphometric differentiation among island populations of two Norops lizards (Reptilia: Sauria: Polychrotidae) on independently colonized islands of the Islas de Bahia (Honduras). J Biogeogr 34:1124–1135CrossRefGoogle Scholar
  56. Koopman WIM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217PubMedCrossRefGoogle Scholar
  57. Lannoo M (ed) (2005) Amphibian declines. UC Press, CaliforniaGoogle Scholar
  58. Lemmon EM, Lemmon AR, Collins JT, Lee-Yaw JA, Cannatella DC (2007) Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (Pseudacris). Mol Phylogenet Evol 44:1068–1082PubMedCrossRefGoogle Scholar
  59. Loftus-Hills J, Littlejohn M (1992). Reinforcement and reproductive character displacement in Gastrophryne carolinensis and G. olivacea (Anura: Microhylidae): a reexamination. Evolution 46:896–906CrossRefGoogle Scholar
  60. Lowe WH, Likens GE McPeek MA (2006) Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87:334–339PubMedCrossRefGoogle Scholar
  61. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  62. Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Mol Ecol 11:1145–1156PubMedCrossRefGoogle Scholar
  63. Masta S, Lauren NM, Routman EJ (2003) Population genetic structure of the toad Bufo woodhousii: an empirical assessment of the effects of haplotype extinction on nested clade analysis. Mol Ecol 12:1541–1554PubMedCrossRefGoogle Scholar
  64. Measey GJ, Galbusera P, Breyne P, Matthysen E (2007) Gene flow in a direct-developing, leaf litter frog between isolated mountains in the Taita Hills, Kenya. Conserv Genet 8:1177–1188CrossRefGoogle Scholar
  65. Meudt HM, Clarke AC (2006) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117CrossRefGoogle Scholar
  66. Monsen KJ, Blouin MS (2003) Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Mol Ecol 12:3275–3286PubMedCrossRefGoogle Scholar
  67. Moore W (1995) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees vs. nuclear-gene trees. Evolution 49:718–726CrossRefGoogle Scholar
  68. Moore W (1997) Mitochondrial-gene trees vs. nuclear-gene trees, A reply to Hoelzer. Evolution 51:627–629CrossRefGoogle Scholar
  69. Mulcahy D, Mendelson J (2000) Phylogeography and speciation of the morphologically variable, widespread species Bufo valliceps, based on molecular evidence from mtDNA. Mol Phylogenet Evol 17:173–189PubMedCrossRefGoogle Scholar
  70. Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273PubMedCrossRefGoogle Scholar
  71. Nelson C (1972a) Gastrophryne carolinensis (Holbrook) Eastern narrow-mouthed toad. Cat Am Amph Rept 120:1–4Google Scholar
  72. Nelson C (1972b) Systematic studies of the North American Microhylid genus Gastrophryne. J Herpetol 6:111–137CrossRefGoogle Scholar
  73. Nielson M, Lohman K, Sullivan J (2001) Phylogeography of the tailed frog (Ascaphus truei): implication for the biogeography of the Pacific Northwest. Evolution 55:147–160PubMedGoogle Scholar
  74. Nielson M, Lohman K, Daugherty CH, Allendorf FW, Knudsen KL, Sullivan J (2006) Allozyme and mitochondrial DNA variation in the tailed frog (Anura: Ascaphus): the influence of geography and gene flow. Herpetologica 62:235–258CrossRefGoogle Scholar
  75. Nittinger F, Gamauf A, Pinsker W, Wink M, Haring E (2007) Phylogeography and population structure of the saker falcon (Falco cherrug) and the influence of hybridization: mitochondrial and microsatellite data. Mol Ecol 16:1497–1517PubMedCrossRefGoogle Scholar
  76. Nylander J (2004) MrModeltest (Program distributed by the author). Evolutionary Biology Centre, Eppsala UniversityGoogle Scholar
  77. Ogden R, Thorpe RS (2002) The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Mol Ecol 11:437–445PubMedCrossRefGoogle Scholar
  78. O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816PubMedCrossRefGoogle Scholar
  79. Olsson M, Ujvari B, Wapstra E, Madsen T, Shine R, Bensch S (2005) Does mate guarding prevent rival mating in snow skinks? A test using AFLP. Herpetologica 61:389–394CrossRefGoogle Scholar
  80. Palumbi SR, Cipriano F, Hare MP (2001) Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55(5): 859–868PubMedCrossRefGoogle Scholar
  81. Parker H (1934) A monograph of the frogs of the family Microhylidae. British Museum of Natural History, LondonGoogle Scholar
  82. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  83. Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  84. Recuero E, Martinez-Solano I, Parra-Olea G, Gracia-Paris M (2006) Phylogeography of Pseudacris regilla (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement. Mol Phylogenet Evol 39:293–304PubMedCrossRefGoogle Scholar
  85. Riberon A, Miaud C, Guyetant R, Taberlet P (2004) Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol Phylogenet Evol 31:910–914PubMedCrossRefGoogle Scholar
  86. Richmond JQ, Jockusch EL (2007) Body size evolution simultaneously creates and collapses species boundaries in a clade of scincid lizards. Proc R Soc B 274:1701–1708PubMedCrossRefGoogle Scholar
  87. Riddle B (1996) The historical assembly of continental biotas: late Quaternary range-shifting, areas of endemism, and biogeographic structure in the North American mammal fauna. Ecography 21:437–446CrossRefGoogle Scholar
  88. Riddle BR (2005) Is biogeography emerging from its identity crisis? J Biogeogr 32:185–186CrossRefGoogle Scholar
  89. Rissler LJ, Taylor DR (2003) The phylogenetics of Desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 27:197–211PubMedCrossRefGoogle Scholar
  90. Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213PubMedCrossRefGoogle Scholar
  91. Rissler LJ, Hijmans R, Graham C, Moritz C, Wake D (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California herpetofauna. Am Nat 167:655–666PubMedCrossRefGoogle Scholar
  92. Roark AW (2003) Comparative genetic analysis in insular and mainland populations of the Florida Cottonmouth, Agkistrodon piscivorous conanti. Thesis, University of FloridaGoogle Scholar
  93. Rodriguez-Robles J, Denardo D, Staubs R (1999) Phylogeography of the California mountain kingsnake, Lampropeltis zonata (Colubridae). Mol Ecol 8:1923–1934PubMedCrossRefGoogle Scholar
  94. Ronquist F, Huelsenbeck J (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  95. Rozas J, Rozas R (2001) DnaSP 3.52 DNA sequence polymorphism, software for nucleotidic polymorphism analysis. Universitat de Barcelona, BarcelonaGoogle Scholar
  96. Rudh A, Rogell B, Hoglund J (2007) Non-gradual variation in colour morphs of the strawberry poison frog Dendrobates pumilio: genetic and geographical isolation suggest a role for maintaining polymorphism. Mol Ecol 16:4284–4294PubMedCrossRefGoogle Scholar
  97. Shaffer HB, Fellers GM, Magee A, Voss R (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura, Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257PubMedCrossRefGoogle Scholar
  98. Shaffer HB, Fellers GM, Voss SR, Olivers C, Pauly GB (2004) Species boundaries, phylogeography and conservation genetics of the red-legged frog (Rana aurora/draytonii) complex. Mol Ecol 13:2667–2677PubMedCrossRefGoogle Scholar
  99. Simmons MP, Zhang L-B, Webb CT, Muller K (2007) A penalty of using anonymous dominant markers (AFLPs, ISSRs, and RAPDs) for phylogenetic inference. Mol Phylogenet Evol 42:528–542PubMedCrossRefGoogle Scholar
  100. Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470CrossRefGoogle Scholar
  101. Smith MA, Green DM (2004) Phylogeography of Bufo fowleri at its northern range limit. Mol Ecol 13:3723–3733PubMedCrossRefGoogle Scholar
  102. Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293PubMedCrossRefGoogle Scholar
  103. Starkey DE, Shaffer HB, Burke RL, Forstner MR, Iverson JB, Janzen FJ, Rodin AG, Ultsch GR (2003) Molecular systematics, phylogeography, and the effects of Pleistocene glaciation in the painted turtle (Chrysemys picta) complex. Evolution 57:119–128PubMedGoogle Scholar
  104. Strange R, Burr B (1997) Intraspecific phylogeography of North American highland fishes: a test of the Pleistocene vicariance hypothesis. Evolution 51:885–897CrossRefGoogle Scholar
  105. Sullivan J, Lavoue S, Arnegard M, Hopkins C (2004) AFLP’s resolve phylogeny and reveal mitochondrial introgression within a species flock of African Electric fish (Mormyroidea: Teleostei). Evolution 58:825–841PubMedGoogle Scholar
  106. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203PubMedCrossRefGoogle Scholar
  107. Swenson NG, Howard DJ (2004) Do suture zones exist? Evolution 58:2391–2397PubMedGoogle Scholar
  108. Swofford D (1999) PAUP*: phylogenetic analyses using parsimony (* and other methods). Sinauer Associates, SunderlandGoogle Scholar
  109. Tinkle DW (1959) Observations of reptiles and amphibians in a Louisiana swamp. Am Midl Nat 62:189–205CrossRefGoogle Scholar
  110. Titus TA, Larson A (1996) Molecular phylogenetics of desmognathine salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology, life history, and morphology. Syst Biol 45:451–472CrossRefGoogle Scholar
  111. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  112. Vredenburg VT, Bingham R, Knapp R, Morgan JAT, Moritz C, Wake D (2007) Concordant molecular and phenotypic data delineate new taxonomy and conservation priorities for the endangered mountain yellow-legged frog. J Zool 271:361–374CrossRefGoogle Scholar
  113. Wang Y-Q, Zhu W-Q, Huang L, Zhou K-Y, Wang R-P (2006) Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: an implication on the management of captive conservation. Biodivers Conserv 15:2945–2955CrossRefGoogle Scholar
  114. Whitlock A, Sztatecsny M, Jehle R (2006) AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphib-Reptil 27:126–129CrossRefGoogle Scholar
  115. Wild ER (1995) New genus and species of Amazonian microhylid frog with a phylogenetic analysis of new world genera. Copeia 1995:837–849Google Scholar
  116. Wiley E, Mayden R (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Ann Mo Bot Gard 72:592–635CrossRefGoogle Scholar
  117. Zweifel RG (1986) A new genus and species of Microhylid frog from the Cerro de la Neblina region of Venezuela and a discussion of relationships among new world Microhylid genera. Am Mus Novit 2863:1–24Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Robert Makowsky
    • 1
    • 2
  • Jason Chesser
    • 1
    • 3
  • Leslie J. Rissler
    • 1
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of BiologyUniversity of Texas at ArlingtonArlingtonUSA
  3. 3.Department of BiologyUniversity of MississippiUniversityUSA

Personalised recommendations