Advertisement

Genetica

, Volume 133, Issue 1, pp 93–106 | Cite as

Glimpses of evolution: heterochromatic histone H3K9 methyltransferases left its marks behind

  • Veiko Krauss
Article

Abstract

In eukaryotes, histone methylation is an epigenetic mechanism associated with a variety of functions related to gene regulation or genomic stability. Recently analyzed H3K9 methyltransferases (HMTases) as SUV39H1, Clr4p, DIM-5, Su(var)3-9 or SUVH2 are responsible for the establishment of histone H3 lysine 9 methylation (H3K9me), which is intimately connected with heterochromatinization. In this review, available data will be evaluated concerning (1) the phylogenetic distribution of H3K9me as heterochromatin-specific histone modification and its evolutionary stability in relation to other epigenetic marks, (2) known families of H3K9 methyltransferases, (3) their responsibility for the formation of constitutive heterochromatin and (4) the evolution of Su(var)3-9-like and SUVH-like H3K9 methyltransferases. Compilation and parsimony analysis reveal that histone H3K9 methylation is, next to histone deacetylation, the evolutionary most stable heterochromatic mark, which is established by at least two subfamilies of specialized heterochromatic HMTases in almost all studied eukaryotes.

Keywords

Cladistic analysis Clr4p DIM-5 H3K9 methyltransferases Heterochromatin Histone methylation Molecular evolution Su(var)3-9 SUV39H1 SUVH2 

Notes

Acknowledgments

I would like to thank Dr Gunter Reuter for critical reading of the manuscript. I gratefully acknowledge the sequencing of the yet unpublished genomes of Coprinus cinereus, Rhizopus oryzae, Nematostella vectensis, Acropora millepora, Hydra magnipapillata, Schistosoma mansoni, Aplysia californica, Pediculus humanus, Nasonia vitripennis, Tribolium castaneum and Trichinella spiralis. Research on evolution of Su(var)3-9-like proteins herein was funded by a grant from the Deutsche Forschungsgemeinschaft.

References

  1. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T (1999) Functional mammalian homologues of the Drosophila PEV modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18(7):1923–1938PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedGoogle Scholar
  3. Alvarez-Venegas R, Avramova Z (2005) Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33(16):5199–5207PubMedGoogle Scholar
  4. Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13(8):627–637PubMedGoogle Scholar
  5. Andreyeva EN, Belyaeva ES, Semeshin VF, Pokholkova GV, Zhimulev IF (2005) Three distinct chromatin domains in telomere ends of polytene chromosomes in Drosophila melanogaster Tel mutants. J Cell Sci 118:5465–5477PubMedGoogle Scholar
  6. Barzotti R, Pelliccia F, Rocchi A (2006) DNA methylation, histone H3 methylation, and histone H4 acetylation in the genome of a crustacean. Genome 49(1):87–90PubMedGoogle Scholar
  7. Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29(21):4319–4333PubMedGoogle Scholar
  8. Beisel C, Imhof A, Greene J, Kremmer E, Sauer F (2002) Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 419:857–862PubMedGoogle Scholar
  9. Bongiorni S, Cintio O, Prantera G (1999) The relationship between DNA methylation and chromosome imprinting in the coccid Planococcus citri. Genetics 151(4):1471–1478PubMedGoogle Scholar
  10. Bongiorni S, Pasqualini B, Taranta M, Singh PB, Prantera G (2007) Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway. J Cell Sci 120(6):1072–1080PubMedGoogle Scholar
  11. Byrd KN, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 100(20):11535–11540PubMedGoogle Scholar
  12. Carrington EA, Jones RS (1996) The Drosophila enhancer of zeste gene encodes a chromosomal protein: examination of wild-type and mutant protein distribution. Development 122(12):4073–4083PubMedGoogle Scholar
  13. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592PubMedGoogle Scholar
  14. Casas-Mollano JA, van Dijk K, Eisenhart J, Cerutti H (2007) SET3p monomethylates histone H3 on lysine 9 and is required for the silencing of tandemly repeated transgenes in Chlamydomonas. Nucleic Acids Res 35(3):939–950PubMedGoogle Scholar
  15. Chadwick BP, Willard HF (2004) Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. Proc Natl Acad Sci USA 101(50):17450–17455PubMedGoogle Scholar
  16. Chin HG, Patnaik D, Esteve PO, Jacobsen SE, Pradhan S (2006) Catalytic properties and kinetic mechanism of human recombinant Lys 9 histone H3 methyltransferase SUV39H1: participation of the chromodomain in enzymatic catalysis. Biochemistry 45(10):3272–3284PubMedGoogle Scholar
  17. Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R, Di Fiore PP, Bonapace IM (2004) Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 24(6):2526–2535PubMedGoogle Scholar
  18. Cowell IG, Aucott R, Mahadevaiah SK, Burgoyne PS, Huskisson N, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Wu R, Gilbert DM, Shi W, Fundele R, Morrison H, Jeppesen P, Singh PB (2002) Heterochromatin, HP1 and methylation at lysine 9 of histone H3 in animals. Chromosoma 111(1):22–36PubMedGoogle Scholar
  19. Criniti A, Simonazzi G, Cassanelli S, Ferrari M, Bizzaro D, Manicardi GC (2005) X-linked heterochromatin distribution in the holocentric chromosomes of the green apple aphid Aphis pomi. Genetica 124(1):93–98PubMedGoogle Scholar
  20. Czermin B, Schotta G, Hulsmann BB, Brehm A, Becker PB, Reuter G, Imhof A (2001) Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep 2(10):915–919PubMedGoogle Scholar
  21. Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002) Drosophila enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell 111(2):185–196PubMedGoogle Scholar
  22. Danzer JR, Wallrath LL (2004) Mechanisms of HP1-mediated gene silencing in Drosophila. Development 131(15):3571–3580PubMedGoogle Scholar
  23. Donaldson KM, Lui A, Karpen GH (2002) Modifiers of terminal deficiency-associated position effect variegation in Drosophila. Genetics 160(3):995–1009PubMedGoogle Scholar
  24. Ebbs ML, Bender J (2006) Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell 18(5):1166–1176PubMedGoogle Scholar
  25. Ebert A, Schotta G, Lein S, Kubicek S, Krauss V, Jenuwein T, Reuter G (2004) Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev 18(23):2973–2983PubMedGoogle Scholar
  26. Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14(4):377–392PubMedGoogle Scholar
  27. Eskeland R, Czermin B, Boeke J, Bonaldi T, Regula JT, Imhof A (2004) The N-terminus of Drosophila SU(VAR)3-9 mediates dimerization and regulates its methyltransferase activity. Biochemistry 43(12):3740–3749PubMedGoogle Scholar
  28. Esteve PO, Patnaik D, Chin HG, Benner J, Teitell MA, Pradhan S (2005) Functional analysis of the N- and C-terminus of mammalian G9a histone H3 methyltransferase. Nucleic Acids Res 33(10):3211–3223PubMedGoogle Scholar
  29. Fischer A, Hofmann I, Naumann K, Reuter G (2006) Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. J Plant Physiol 163(3):358–368PubMedGoogle Scholar
  30. Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns—from conservation to diversity. Trends Plant Sci 11(4):199–208PubMedGoogle Scholar
  31. Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278(34):32181–32188PubMedGoogle Scholar
  32. Gilbert N, Boyle S, Sutherland H, de Las Heras J, Allan J, Jenuwein T, Bickmore WA (2003) Formation of facultative heterochromatin in the absence of HP1. EMBO J 22(20):5540–5550PubMedGoogle Scholar
  33. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMedGoogle Scholar
  34. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM, Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80(4):583–592PubMedGoogle Scholar
  35. Heitz E (1928) Das Heterochromatin der Moose. Jahrb Wiss Bot 69:762–818Google Scholar
  36. Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33(6):967–973PubMedGoogle Scholar
  37. Huang S, Shao G, Liu L (1998) The PR domain of the Rb-binding zinc finger protein RIZ1 is a protein binding interface and is related to the SET domain functioning in chromatin-mediated gene expression. J Biol Chem 273(26):15933–15939PubMedGoogle Scholar
  38. Huisinga KL, Brower-Toland B, Elgin SC (2006) The contradictory definitions of heterochromatin: transcription and silencing. Chromosoma 115(2):110–122PubMedGoogle Scholar
  39. Hwang KK, Eissenberg JC, Worman HJ (2001) Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc Natl Acad Sci USA 98(20):11423–11427PubMedGoogle Scholar
  40. Ivanova AV, Bonaduce MJ, Ivanov SV, Klar AJ (1998) The chromo and SET domains of the Clr4 protein are essential for silencing in fission yeast. Nat Genet 19(2):192–195PubMedGoogle Scholar
  41. Jacobs SA, Fischle W, Khorasanizadeh S (2004) Assays for the determination of structure and dynamics of the interaction of the chromodomain with histone peptides. Methods Enzymol 376:131–148PubMedCrossRefGoogle Scholar
  42. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedGoogle Scholar
  43. Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17(4):379–384PubMedGoogle Scholar
  44. Juranek SA, Rupprecht S, Postberg J, Lipps HJ (2005) snRNA and heterochromatin formation are involved in DNA excision during macronuclear development in stichotrichous ciliates. Eukaryot Cell 4(11):1934–1941PubMedGoogle Scholar
  45. Kaller M, Euteneuer U, Nellen W (2006) Differential effects of heterochromatin protein 1 isoforms on mitotic chromosome distribution and growth in Dictyostelium discoideum. Eukaryot Cell 5(3):530–543PubMedGoogle Scholar
  46. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20(12):670–676PubMedGoogle Scholar
  47. Kim KC, Geng L, Huang S (2003) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63(22):7619–7623PubMedGoogle Scholar
  48. Kim J, Daniel J, Espejo A, Lake A, Krishna M, Xia L, Zhang Y, Bedford MT (2006) Tudor, MBT and chromo domains gauge the degree of lysine methylation. EMBO Rep 7(4):397–403PubMedGoogle Scholar
  49. Kohlmaier A, Savarese F, Lachner M, Martens J, Jenuwein T, Wutz A (2004) A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. PLoS Biol 2(7):e171PubMedGoogle Scholar
  50. Kourmouli N, Jeppesen P, Mahadevhaiah S, Burgoyne P, Wu R, Gilbert DM, Bongiorni S, Prantera G, Fanti L, Pimpinelli S, Shi W, Fundele R, Singh PB (2004) Heterochromatin and tri-methylated lysine 20 of histone H4 in animals. J Cell Sci 117(Pt 12):2491–2501PubMedGoogle Scholar
  51. Kourmouli N, Sun YM, van der Sar S, Singh PB, Brown JP (2005) Epigenetic regulation of mammalian pericentric heterochromatin in vivo by HP1. Biochem Biophys Res Commun 337(3):901–907PubMedCrossRefGoogle Scholar
  52. Krauss V, Reuter G (2000) Two genes become one: the genes encoding heterochromatin protein Su(var)3-9 and translation initiation factor subunit eIF-2γ are joined to a dicistronic unit in holometabolic insects. Genetics 156(3):1157–1167PubMedGoogle Scholar
  53. Krauss V, Pecyna M, Kurz K, Sass H (2005) Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2γ. Mol Biol Evol 22(1):74–84PubMedGoogle Scholar
  54. Krauss V, Fassl A, Fiebig P, Patties I, Sass H (2006) The evolution of the histone methyltransferase gene Su(var)3-9 in metazoans includes a fusion with and a re-fission from a functionally unrelated gene. BMC Evol Biol 6:e18Google Scholar
  55. Krouwels IM, Wiesmeijer K, Abraham TE, Molenaar C, Verwoerd NP, Tanke HJ, Dirks RW (2005) A glue for heterochromatin maintenance: stable SUV39H1 binding to heterochromatin is reinforced by the SET domain. J Cell Biol 170(4):537–549PubMedGoogle Scholar
  56. Kuhfittig S, Szabad J, Schotta G, Hoffmann J, Mathe E, Reuter G (2001) pitkin(D), a novel gain-of-function enhancer of position-effect variegation, affects chromatin regulation during oogenesis and early embryogenesis in Drosophila. Genetics 157(3):1227–1244PubMedGoogle Scholar
  57. Laible G, Wolf A, Dorn R, Reuter G, Nislow C, Lebersorger A, Popkin D, Pillus L, Jenuwein T (1997) Mammalian homologues of the Polycomb-group gene enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. EMBO J 16(11):3219–3232PubMedGoogle Scholar
  58. Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R (2006) Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol 26(17):6395–6402PubMedGoogle Scholar
  59. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13(14):1192–1200PubMedGoogle Scholar
  60. Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24(2):309–316PubMedGoogle Scholar
  61. Maddison D, Maddison W (2005) MacClade: analysis of phylogeny and character evolution, version 4.08. Sinauer associates, Sunderland, MA, USAGoogle Scholar
  62. Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30(3):329–334PubMedGoogle Scholar
  63. Melcher M, Schmid M, Aagaard L, Selenko P, Laible G, Jenuwein T (2000) Structure-function analysis of SUV39H1 reveals a dominant role in heterochromatin organization, chromosome segregation, and mitotic progression. Mol Cell Biol 20(10):3728–3741PubMedGoogle Scholar
  64. Mellone BG, Ball L, Suka N, Grunstein MR, Partridge JF, Allshire RC (2003) Centromere silencing and function in fission yeast is governed by the amino terminus of histone H3. Curr Biol 13(20):1748–1757PubMedGoogle Scholar
  65. Millar CB, Grunstein M (2006) Genome-wide patterns of histone modifications in yeast. Nat Rev Mol Cell Biol 7(9):657–666PubMedGoogle Scholar
  66. Mis J, Ner SS, Grigliatti TA (2006) Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mol Genet Genomics 275(6):513–526PubMedGoogle Scholar
  67. Mosiolek M, Pasierbek P, Malarz J, Mos M, Joachimiak AJ (2005) Rumex acetosa Y chromosomes: constitutive or facultative heterochromatin? Folia Histochem Cytobiol 43(3):161–167PubMedGoogle Scholar
  68. Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292(5514):110–113PubMedGoogle Scholar
  69. Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24(7):1418–1429PubMedGoogle Scholar
  70. Noma K, Allis CD, Grewal SIS (2001) Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155PubMedGoogle Scholar
  71. Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC (2004) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672PubMedGoogle Scholar
  72. Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9(1):25–35PubMedGoogle Scholar
  73. Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107(3):323–337PubMedGoogle Scholar
  74. Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T (2003) Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 12(6):1577–1589PubMedGoogle Scholar
  75. Ponger L, Li WH (2005) Evolutionary diversification of DNA methyltransferases in eukaryotic genomes. Mol Biol Evol 22(4):1119–1128PubMedGoogle Scholar
  76. Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR, Cairns BR, Jones DA (2006) Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 26(19):7077–7085PubMedGoogle Scholar
  77. Rea S, Eisenhaber F, O’Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599PubMedGoogle Scholar
  78. Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol 15(7):880–891Google Scholar
  79. Reuben M, Lin R (2002) Germline X chromosomes exhibit contrasting patterns of histone H3 methylation in Caenorhabditis elegans. Dev Biol 245(1):71–82PubMedGoogle Scholar
  80. Reuter G, Fischer A, Hofmann I (2005) Heterochromatin and the control of gene silencing in plants. In: Meyer P (ed) Plant epigenetics (annual plant reviews 19). Blackwell Publishing, Oxford, pp 106–133Google Scholar
  81. Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12(6):1591–1598PubMedGoogle Scholar
  82. Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Jenuwein T, Reuter G (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26(1):103–115PubMedGoogle Scholar
  83. Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T (2004) Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119(5):603–614PubMedGoogle Scholar
  84. Schmitt E, Blanquet S, Mechulam Y (2002) The large subunit of initiation factor aIF2 is a close structural homologue of elongation factors. EMBO J 21(7):1821–1832PubMedGoogle Scholar
  85. Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G (2002) Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 21(5):1121–1131PubMedGoogle Scholar
  86. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T (2004) A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18(11):1251–1262PubMedGoogle Scholar
  87. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16(8):919–932PubMedGoogle Scholar
  88. Selker EU, Tountas NA, Cross SH, Margolin BS, Murphy JG, Bird AP, Freitag M (2003) The methylated component of the Neurospora crassa genome. Nature 422:893–897PubMedGoogle Scholar
  89. Seum C, Reo E, Peng H, Rauscher FJ, Spierer P, Bontron S (2007) Drosophila SETDB1 is required for chromosome 4 silencing. PLoS Genet 3(5):e76PubMedGoogle Scholar
  90. Shen WH (2001) NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth. Plant J 28(4):371–383PubMedGoogle Scholar
  91. Shi J, Dawe RK (2006) Partitioning of the maize epigenome by the number of methyl groups on histone H3 lysines 9 and 27. Genetics 173(3):1571–1583PubMedGoogle Scholar
  92. Stabell M, Eskeland R, Bjorkmo M, Larsson J, Aalen RB, Imhof A, Lambertsson A (2006) The Drosophila G9a gene encodes a multi-catalytic histone methyltransferase required for normal development. Nucleic Acids Res 34(16):4609–4621PubMedGoogle Scholar
  93. Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23(1):93–106PubMedGoogle Scholar
  94. Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25(7):2525–2538PubMedGoogle Scholar
  95. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45PubMedGoogle Scholar
  96. Swofford DL (2002) PAUP: phylogenetic analysis using parsimony (and other methods), version 4.0b10. Sinauer associates, Sunderland, MA, USAGoogle Scholar
  97. Tachibana M, Sugimoto K, Fukushima T, Shinkai Y (2001) Set domain containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276(27):25309–25317PubMedGoogle Scholar
  98. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19(7):815–826PubMedGoogle Scholar
  99. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283PubMedGoogle Scholar
  100. Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J, Grewal SIS, Allis CD, Cheng X, Selker EU (2003) Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34(1):75–79PubMedGoogle Scholar
  101. Taverna SD, Coyne RS, Allis CD (2002) Methylation of histone h3 at lysine 9 targets programmed DNA elimination in Tetrahymena. Cell 110(6):701–711PubMedGoogle Scholar
  102. Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE, Reuter G, Aalen RB (2006) The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic Acids Res 34(19):5461–5470PubMedGoogle Scholar
  103. Tripoulas N, LaJeunesse D, Gildea J, Shearn A (1996) The Drosophila Ash1 gene product, which is localized at specific sites on polytene chromosomes, contains a SET domain and a PHD finger. Genetics 143(2):913–928PubMedGoogle Scholar
  104. Unoki M, Nishidate T, Nakamura Y (2004) ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 23(46):7601–7610PubMedGoogle Scholar
  105. Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19(3):381–391PubMedGoogle Scholar
  106. Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26(24):9185–9195PubMedGoogle Scholar
  107. Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12(2):475–487PubMedGoogle Scholar
  108. Yu Y, Dong A, Shen WH (2004) Molecular characterization of the tobacco SET domain protein NtSET1 unravels its role in histone methylation, chromatin binding, and segregation. Plant J 40(5):699–711PubMedGoogle Scholar
  109. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X (2003) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12(1):177–185PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Genetics, Institute for Biology IIUniversity of LeipzigLeipzigGermany

Personalised recommendations