Advertisement

Genetica

, Volume 131, Issue 2, pp 201–207 | Cite as

The origin of an unusual sex chromosome constitution in Acomys sp. (Rodentia, Muridae) from Tanzania

  • Riccardo Castiglia
  • Rhodes Makundi
  • Marco Corti
Research Article

Abstract

This paper describes a case which presents an evident variation from the “standard” XX/XY sex chromosomal constitution in a rodent, Acomys sp. This species known to be found in three localities of East Africa has only recently been separated from A. spinosissimus, its closest relative. In our study, five specimens of Acomys sp. and eight specimens of A. spinosissimus were live-trapped in five localities. Comparisons between the two taxa assed by G- banding show a complete homology in the chromosomal shape and banding pattern for 29 pairs of chromosomes corresponding to the complete autosomal set of A. spinosissimus. However, while all the A. spinosissimus analysed have 2n = 60 and a XY-XX system, in Acomys sp. males and females constitute mosaics for sex chromosomes in the bone marrow cells. Females (2n = 59, 60) have an excess (97%) of aneuploid cells with one single giant X chromosome, and males (2n = 60, 61) show X0/XY cells occurring in somatic tissues and XY cells in the germinal lineage. In addition, an odd heterochromatic submetacentric chromosome was identified in all the cells examined in two males and a female of Acomys sp. Since this chromosome was not related to sex determination and it is not present in all the analysed specimens, it can be considered as a B chromosome. Finally, the in situ fluorescence hybridisation (FISH) with telomeric probes showed a very intense interstitial telomeric signal (ITS) at the medial part on the long heterochromatic arm of the X chromosome. This could be due to recent chromosomal rearrangement.

Keywords

Acomys spinosissimus African rodent B chromosome Cytotaxonomy Mosaicism Sex chromosome Telomeric sequences In situ fluorescence hybridisation 

Notes

Acknowledgements

This work has been supported by a European Union, 5th framework RTD Program “Staplerat”, Progetti d’Ateneo (MC). We thanks Ernesto Capanna for helpful suggestion on an early version of the manuscript.

References

  1. Arakawa Y, Nishida-Umehara C, Matsuda Y, Sutou S, Suzuki H (2002) X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat. Cytogenet Genome Res 99:303–309PubMedCrossRefGoogle Scholar
  2. Arnason U, Alderdice PW, Lien J, Widegren B (1998) Highly repetitive DNA in the baleen whale genera Balaenoptera and Megaptera. J Mol Evol 27:217–221CrossRefGoogle Scholar
  3. Ayling LJ, Griffin DK (2002) The evolution of sex chromosomes. Cytogenet Genome Res 99:125–140PubMedCrossRefGoogle Scholar
  4. Barome P-O, Volobouev V, Monnerot M, Kazgeba Mfune J, Chitaukali W, Gautun J-C, Denys C (2001) Phylogeny of Acomys spinosissimus (Rodentia, Muridae) from north Malawi and Tanzania: evidence from morphological and molecular analysis. Biol J Linn Soc 73:321–340CrossRefGoogle Scholar
  5. Bianchi NO (2002) Akodon sex reversed females: the never ending story. Cytogenet Genome Res 96:60–65PubMedCrossRefGoogle Scholar
  6. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  7. Burgoyne PS, Ojarikre OA, Turner JM (2002) Evidence that postnatal growth retardation in XO mice is due to haploinsufficiency for a non-PAR X gene. Cytogenet Genome Res 99:252–256PubMedCrossRefGoogle Scholar
  8. Castiglia R, Garagna S, Merico V, Oguge N, Corti M (2006) Cytogenetics of a new cytotype of african Mus (subgenus Nannomys) minutoides (Rodentia, Muridae) from Kenya: C- and G- banding and distribution of (TTAGGG)n telomeric sequences. Chromosome Res 14:587–594PubMedCrossRefGoogle Scholar
  9. Close RL (1984) Rates of sex chromosome loss during development in different tissues of the bandicoots Perameles nasuta and Isoodon obesulus (Marsupialia: Peramelidae). Austr J Biol Sci 37:53–61Google Scholar
  10. Delbridge ML, Graves JA (1999) Mammalian Y chromosome evolution and the male-specific functions of Y chromosome-borne genes. Rev Reprod 4:101–109PubMedCrossRefGoogle Scholar
  11. Disteche CM, Filippova GN, Tsuchiya KD (2002) Escape from X inactivation. Cytogenet Genome Res 99:36–43PubMedCrossRefGoogle Scholar
  12. Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V (2003) Evolution of rRNA gene clusters and telomeric repeats during explosive genome repatterning in Taterillus X (Rodentia, Gerbillinae). Cytogenet Genome Res 103:94–103PubMedCrossRefGoogle Scholar
  13. Evans EP, Breckon G, Ford CE (1964) An air-drying method for meiotic preparations from mammalian testes. Cytogenetics 3:289–294Google Scholar
  14. Fredga K (1994) Bizarre mammalian sex-determining mechanisms. In: Short RV, Balaban E (eds) The differences between the sexes. Cambridge University Press, Cambridge, pp 397–418Google Scholar
  15. Jones RN, Rees H (1982) B chromosomes. Academic Press, New YorkGoogle Scholar
  16. Hayman DL, Martin PG (1974) Mammalia 1: Monotremata and Marsupialia. In: John B (ed) Animal cytogenetics 4. chordata. Gebrüder Borntraeger, Berlin, 110 ppGoogle Scholar
  17. Hsu TC, Patton JL (1969) Bone marrow preparations for chromosome studies. In: Benirschke K (ed) Comparative mammalian cytogenetics. Springer-Verlag, pp 454–460Google Scholar
  18. Lansdorp PM, Verwoerd NP, van de Rijke FM, Dragowska V, Little MT, Dirks RW, Raap AK, Tanke HJ (1996) Heterogeneity in telomere length of human chromosomes. Hum Mol Genet 5:685–691PubMedCrossRefGoogle Scholar
  19. Matthey R (1965) Le probleme de la determination du sexe chez Acomys selousi de Winton—Cytogenetique du genre Acomys (Rodentia–Muridae). Rev Suisse Zool 72:119–144PubMedGoogle Scholar
  20. Musser GG, Carleton MD (2005) Superfamily Muroidea. In Wilson DE, Reeder DM (eds) Mammal species of the world a taxonomic and geographic reference. Johns Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  21. Ohno S, Jainchill J, Stenius C (1963) The creeping vole (Microtus oregoni) as a gonosomic mosaic. I. The 0Y/XY constitution of the male. Cytogenetics 2:232–239Google Scholar
  22. Ohno S, Stenius CH, Christian I (1966) The X0 as the normal female of the creeping vole (Microtus oregoni). In Darlington CD, Lewis RK (eds). Chromosomes today, vol 1. Oliver and Boyd, Edinburgh, pp 182–187Google Scholar
  23. Seabright MA (1971) A rapid banding technique for human chromosomes. Lancet 2:971–972PubMedCrossRefGoogle Scholar
  24. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  25. Vogel W, Jainta S, Rau W, Geerkens C, Baumstark A, Correa-Cerro LS, Ebenhoch C, Just W (1998) Sex determination in Ellobius lutescens: the story of an enigma. Cytogenet Cell Genet 80:214–21PubMedCrossRefGoogle Scholar
  26. Zhdanova NS, Karamisheva TV, Minina J, Astakhova NM, Lansdorp P, Kammori M, Rubtsov NB, Searle JB (2005) Unusual distribution pattern of telomeric repeats in the shrews Sorex araneus and Sorex granaries. Chromosome Res 13:617–625PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Riccardo Castiglia
    • 1
  • Rhodes Makundi
    • 2
  • Marco Corti
    • 1
  1. 1.Dipartimento di Biologia Animale e dell’UomoUniversità di Roma “La Sapienza”RomaItaly
  2. 2.Pest Management CentreSokoine University of AgricultureMorogoroTanzania

Personalised recommendations