, 131:1 | Cite as

Globalization and fruitfly invasion and expansion: the medfly paradigm

  • A. R. Malacrida
  • L. M. Gomulski
  • M. Bonizzoni
  • S. Bertin
  • G. Gasperi
  • C. R. Guglielmino
Review paper


The phytophagous insects of the Tephritidae family commonly referred to as “true fruit flies” offer different case histories of successful invasions. Mankind has played an important role in altering the distributions of some of the more polyphagous and oligophagous species. However, the question arises why only a few species have become major invaders. The understanding of traits underlying adaptation in different environments is a major topic in invasion biology. Being generalists or specialists, along the K–r gradient of the growth curve, make a difference in term of food resources exploitation and interspecies competition and displacement. The species of the genus Ceratitis are good examples of r-strategists. The genetic and biological data of the most notorious Ceratitis species, the Mediterranean fruit fly Ceratitis capitata (medfly), are reviewed to investigate the traits and behaviours that make the medfly an important invader. It can be learnt from medfly, that invasions in a modern global trade network tend to be due to multiple introductions. This fact allows a maintenance or enhancement of genetic variability in the adventive populations, which in turn increases their potential invasiveness. Our current knowledge of the medfly genome opens the way for future studies on functional genomics.


Ceratitis capitata Colonization Invasion Medfly Population genetics Tephritid 


  1. Aluja M, Norrbom AL (2000) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Ranton, FloridaGoogle Scholar
  2. Ashburner M (1998) Speculations on the subject of alcohol dehydrogenase and its properties in Drosophila and other fruit flies. BioEssays 20:949–954PubMedCrossRefGoogle Scholar
  3. Augustinos AA, Stratikopoulos EE, Zacharopoulou A, Mathiopoulos KD (2002) Polymorphic microsatellite markers in the olive fly, Bactrocera oleae. Mol Ecol Notes 2:278–280CrossRefGoogle Scholar
  4. Augustinos AA, Mamuris Z, Stratikopoulos EE, D’Amelio S, Zacharopoulou A, Mathiopoulos KD (2005) Microsatellite analysis of olive fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125:231–241PubMedCrossRefGoogle Scholar
  5. Back EA, Pemberton CE (1918) The Mediterranean Fruit Fly. USDA Bulletin No. 491, USDA, Washington DC, p 63Google Scholar
  6. Baliraine FN, Bonizzoni M, Osir EO, Lux SA, Mulaa FJ, Zheng L et al (2003) Comparative analysis of microsatellite loci in four fruit fly species of the genus Ceratitis (Diptera: Tephritidae). Bull Entomol Res 93:1–10PubMedCrossRefGoogle Scholar
  7. Baliraine FN, Bonizzoni M, Guglielmino CR, Osir EO, Lux SA, Mulaa FJ et al (2004) Population genetics of the potentially invasive African fruit fly species, Ceratitis rosa and Ceratitis fasciventris (Diptera: Tephritidae). Mol Ecol 13:683–695PubMedCrossRefGoogle Scholar
  8. Bohonak AJ, Davies N, Villablanca FX, Roderick GK (2001) Invasion genetics of New World medflies: testing alternative colonization scenarios. Biol Invasions 3:103–111CrossRefGoogle Scholar
  9. Bonizzoni M, Malacrida AR, Guglielmino CR, Gomulski LM, Gasperi G, Zheng L (2000) Microsatellite polymorphism in the Mediterranean fruit fly, Ceratitis capitata. Insect Mol Biol 9:251–261PubMedCrossRefGoogle Scholar
  10. Bonizzoni M, Zheng L, Guglielmino CR, Haymer DS, Gasperi G, Gomulski LM et al (2001) Microsatellite analysis of medfly bioinfestations in California. Mol Ecol 10:2515–2524PubMedCrossRefGoogle Scholar
  11. Bonizzoni M, Katsoyannos BI, Marguerie R, Guglielmino CR, Gasperi G, Malacrida A, Chapman T (2002) Microsatellite analysis reveals remating by wild Mediterranean fruit fly females, Ceratitis capitata. Mol Ecol 11:1915–1921PubMedCrossRefGoogle Scholar
  12. Bonizzoni M, Guglielmino CR, Smallridge CJ, Gomulski LM, Malacrida AR, Gasperi G (2004) On the origins of medfly invasion and expansion in Australia. Mol Ecol 13:3845–3855PubMedCrossRefGoogle Scholar
  13. CABI/EPPO (1998) Distribution Maps of quarantine pests for Europe. CAB International, Wallingford, UKGoogle Scholar
  14. Capy P, Gasperi G, Biemont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106PubMedCrossRefGoogle Scholar
  15. Carey JR (1991) Establishment of the Mediterranean fruit fly in California. Science 253:1369–1373PubMedCrossRefGoogle Scholar
  16. Carey JR (1996) The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology 77:1690–1697CrossRefGoogle Scholar
  17. Carey JR, Yang P, Foote D (1988) Demographic analysis of insect reproductive levels, patterns and heterogeneity: case study of laboratory strains of three Hawaiian tephritids. Entomol Exp Appl 46:85–91CrossRefGoogle Scholar
  18. Chen CC, Tseng YH (1992) Monitoring and survey of insect pests with potential to invade the Republic of China. Plant quarantine in Asia and the Pacific: Report of an APO Study Meeting, pp 42–52Google Scholar
  19. Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Raghu S, Roderick GK et al (2005) Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol 50:293–319PubMedCrossRefGoogle Scholar
  20. Davies N, Villablanca FX, Roderick GK (1999) Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequence at multiple intron loci. Genetics 153:351–360PubMedGoogle Scholar
  21. De Breme F (1842) Note sur le genre Ceratitis de M. Mac Heay (Diptera). Ann Soc Entomol France 11:183–190Google Scholar
  22. De Meyer M (2001a) Distribution patterns and host–plant relationships within the genus Ceratitis MacLeay (Diptera: Tephritidae) in Africa. Cimbebasia 17:219–228Google Scholar
  23. De Meyer M (2001b) On the identity of the Natal fruit fly Ceratitis rosa Karsch (Diptera, Tephritidae). Entomologie 71:55–62Google Scholar
  24. De Meyer M, Copeland RS, Wharton RA, McPheron BA (2002) On the geographical origin of the medfly, Ceratitis capitata (Wiedemann). Abstract presented at the 6th international symposium on fruit flies of economic importance, Stellenbosch, South Africa, 6–10 May 2002Google Scholar
  25. Diaz-Fleischer F, Papaj DR, Prokopy RJ, Norrbom AL, Aluja M (1999) Evolution of fruit fly oviposition behavior. In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Ranton, Florida, pp 811–842Google Scholar
  26. Duyck PF, David P, Quilici S (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecol Entomol 29:511–520CrossRefGoogle Scholar
  27. Eberhard WG (2000) Sexual behavior and sexual selection in the Mediterranenan fruit fly Ceratitis capitata (Dacine: Ceratitidini). In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Ranton, Florida, pp 459–489Google Scholar
  28. Fimiani P (1989) Mediterranean region. In: Robinson AS, Hooper GH (eds) Fruit flies: their biology, natural enemies and control, vol 3A. Elsevier Science Publ, Amsterdam, Netherlands, pp 39–50Google Scholar
  29. Fletcher BS (1989) Movements of tephritid fruit flies. In: Robinson AS, Hooper GH (eds) Fruit flies: their biology, natural enemies and control, vol 3B. Elsevier Science Publ, Amsterdam, Netherlands, pp 209–219Google Scholar
  30. Frankham R (2003) Genetics and conservation biology. C R Biol 32:S22–29CrossRefGoogle Scholar
  31. Fritz AH, Schable N (2004) Microsatellite loci from the Caribbean Fruit Fly, Anastrepha suspensa (Diptera: Tephritidae). Mol Ecol Notes 4:443–445CrossRefGoogle Scholar
  32. Gasperi G, Guglielmino CR, Malacrida AR, Milani R (1991) Genetic variability and gene flow in geographical populations of Ceratitis capitata (Wied.) (medfly). Heredity 67:347–356PubMedGoogle Scholar
  33. Gasperi G, Bonizzoni M, Gomulski LM, Murelli V, Torti C, Malacrida AR et al (2002) Genetic differentiation, gene flow and the origin of infestations of the medfly, Ceratitis capitata. Genetica 116:125–135PubMedCrossRefGoogle Scholar
  34. Gilchrist AS, Wang Y, Yu H, Raphael K, Gilchrist AS (2003) Genetic delineation of sibling species of the pest fruit fly Bactrocera (Diptera: Tephritidae) using microsatellites. Bull Entomol Res 93:351–360PubMedCrossRefGoogle Scholar
  35. Gomulski LM, Bourtzis K, Brogna S, Morandi PA, Bonvicini C, Sebastiani F et al (1998) Intron size polymorphism of the Adh1 gene parallels the worldwide colonization history of the Mediterranean fruit fly, Ceratitis capitata. Mol Ecol 7:1729–1742CrossRefGoogle Scholar
  36. Gomulski LM, Brogna S, Babaratsas A, Gasperi G, Zacharopoulou A, Savakis C, Bourtzis K (2004a) Molecular basis of the size polymorphism of the first intron of the Adh-1 gene of the mediterranean fruit fly, Ceratitis capitata. J Mol Evol 58:732–742CrossRefGoogle Scholar
  37. Gomulski LM, Torti C, Murelli V, Bonizzoni M, Gasperi G, Malacrida AR (2004b) Medfly transposable elements: diversity, evolution, genomic impact and possible applications. Insect Biochem Mol Biol 34:139–148CrossRefGoogle Scholar
  38. Hagen KS, William WW, Tassan RL (1981) Mediterranean fruitfly: the worst may be yet to come. Calif Agric 35:5–7Google Scholar
  39. Haymer DS, He M, McInnis DO (1997) Genetic marker analysis of spatial and temporal relationships among existing populations and new infestations of the Mediterranean fruit fly (Ceratitis capitata). Heredity 79:302–309CrossRefGoogle Scholar
  40. Kaneshiro KI (2000) Sexual selection and speciation in Hawaiian Drosophila (Drosophilidae): a model system for research in Tepritidae. In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Ranton, Florida, pp 861–877Google Scholar
  41. Katsoyannos P (1992) Olive pests and their control in the Near East. FAO Plant Production and Protection Paper No. 115, FAO Rome, ItalyGoogle Scholar
  42. Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99PubMedCrossRefGoogle Scholar
  43. Kolbe JJ, Glor RE, Rodriguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedCrossRefGoogle Scholar
  44. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391CrossRefGoogle Scholar
  45. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228PubMedCrossRefGoogle Scholar
  46. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  47. Malacrida AR, Guglielmino CR, Gasperi G, Baruffi L, Milani R (1992) Spatial and temporal differentiation in colonizing populations of Ceratitis capitata. Heredity 69:101–111Google Scholar
  48. Malacrida AR, Guglielmino CR, D’Adamo P, Torti C, Marinoni F, Gasperi G (1996) Allozyme divergence and phylogenetic relationships among species of tephritid flies. Heredity 76:592–602Google Scholar
  49. Malacrida AR, Marinoni F, Torti C, Gomulski LM, Sebastiani F, Gasperi G et al (1998) Genetic aspects of the worldwide colonization process of Ceratitis capitata. J Hered 89:501–507PubMedCrossRefGoogle Scholar
  50. McCollum AM, Ganko EW, Barrass PA, Rodriguez JM, McDonald JF (2002) Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene. BMC Evol Biol 19:2–5Google Scholar
  51. McPheron BA, Sheppard WS, Steck GJ (1995) Genetic research and the origin, establishment, and the spread of the Mediterranean fruit fly. In: Morse JG, Metcalf RL, Dowell RV (eds) The medfly in California: defining critical research. Center for Exotic Pest Research, University of California, Riverside, pp 93–107Google Scholar
  52. Meagher TR, Costich DE (2004) ‘Junk’ DNA and long-term phenotypic evolution on Silene section Elisanthe (Caryophyllaceae). Proc R Soc Lond B (suppl.) 271:493–497CrossRefGoogle Scholar
  53. Meixner MD, McPheron BA, Silva JG, Gasperich GE, Sheppard WS (2002) The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol Ecol 11:891–899PubMedCrossRefGoogle Scholar
  54. Metcalf RL (1995) Biography of the Mediterranean fruit fly. In: Morse JG, Metcalf RL, Carey JR, Dowells RV (eds) The Mediterranean fruit fly in California: defining critical research. College of Natural and Agricultural Sciences, University of California, Riverside, CAGoogle Scholar
  55. Myers J, Simberloff D, Kuris AM, Carey JR (2000) Eradication revisited: dealing with exotic species. Trends Ecol Evol 15:316–320PubMedCrossRefGoogle Scholar
  56. Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738PubMedCrossRefGoogle Scholar
  57. Nardon C, Deceliere G, Loevenbruck C, Weiss M, Vieira C, Biemont C (2005) Is genome size influenced by colonization of new environments in dipteran species? Mol Ecol 14:869–878PubMedCrossRefGoogle Scholar
  58. Nei M., Maruyama T., Chakraborty R (1975). The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  59. Novolseltsev VN, Carey RJ, Novoseltseva JA, Papadopoulos NT, Blay S, Yashin AI (2004) Systemic mechanisms of individual reproductive life history in female Medflies. Mech Ageing Dev 125:77–87CrossRefGoogle Scholar
  60. Raphael KA, Whyard S, Shearman D, An X, Frommer M (2004) Bactrocera tryoni and closely related pest tephritids – molecular analysis and prospects for transgenic control strategies. Insect Biochem Mol Biol 34:167–176PubMedCrossRefGoogle Scholar
  61. Reznick D, Bryant MJ, Bashey F (2002) r- and K selection revisited: the role of population regulation in life history evolution. Ecology 83:1509–1520Google Scholar
  62. Rice RE, Phillips PA, Stewart-Leslie J, Sibbett GS (2003) Olive fruit fly populations measured in central and southern California. Calif Agric 57:122–127CrossRefGoogle Scholar
  63. Saki AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  64. Sheppard WS, Steck GJ, McPheron BA (1992) Geographic populations of the Mediterranean fruit fly may be differentiated by mitochondrial DNA variation. Experientia 48:1010–1013CrossRefGoogle Scholar
  65. Silva JG, Meixner MD, McPheron BA, Steck GJ, Sheppard WS (2003) Recent Mediterranean fruit fly (Diptera: Tephritidae) infestations in Florida – a genetic perspective. J Econ Entomol 96:1711–1718PubMedCrossRefGoogle Scholar
  66. Steyskal GC (1982) A second species of Ceratitis (Diptera: Tephritidae) adventive in the New World. Proc Entomol Soc Wash 84:165–166Google Scholar
  67. Torti C, Malacrida AR, Yannopoulos G, Louis C, Gasperi G (1994) Hybrid dysgenesis-like phenomena in the medfly, Ceratitis capitata (Diptera, Tephritidae). J Hered 85:92–99Google Scholar
  68. Torti C, Gomulski LM, Malacrida AR, Capy P, Gasperi G (1997) Genetic and molecular investigations on the endogenous mobile elements of non-drosophilid fruitflies. Genetica 100:119–129PubMedCrossRefGoogle Scholar
  69. Vargas RI, Walsh WA, Kanehisa D, Stark JD, Nishida T (2000) Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Ann Entomol Soc Am 93:75–81CrossRefGoogle Scholar
  70. Vieira C, Biémont C (2004) Transposable element dynamics in two sibling species: Drosophila melanogaster and Drosophila simulans. Genetica 120:115–123PubMedCrossRefGoogle Scholar
  71. Vieira C, Lepetit D, Dumont S, Biémont C (1999) Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol Biol Evol 16:1251–1255PubMedGoogle Scholar
  72. Vieira C, Nardon C, Arpin C, Lepetit D, Biémont C (2002) Evolution of genome size in Drosophila. Is the invader’s genome being invaded by transposable elements? Mol Biol Evol 19:1154–1161PubMedGoogle Scholar
  73. Villablanca FX, Roderick GK, Palumbi SR (1998) Invasion genetics of the Mediterranean fruit fly: variation in multiple nuclear introns. Mol Ecol 7:547–560PubMedCrossRefGoogle Scholar
  74. Volff JN (2005) Genome evolution and biodiversity in teleost fish. Heredity 94:280–294PubMedCrossRefGoogle Scholar
  75. White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, Wallingford and ACIAR, CanberraGoogle Scholar
  76. White IM, De Meyer M, Stonehouse JM (2000) A review of native and introduced fruit flies (Diptera, Tephritidae) in the Indian Ocean Islands of Mauritius, Réunion, and Seychelles. In: Price NS, Seewooruthun SI (eds) Proceedings, Indian Ocean Commission, regional fruit fly symposium, Indian Ocean Commission/European Union, Flic en Flac, Mauritius, pp 15–21Google Scholar
  77. Whittier TS, Shelly TE (1993) Productivity of singly vs multiply mated female Mediterranean fruit-flies, Ceratitis capitata (Diptera: Tephritidae). J Kansas Entomol Soc 66:200–209Google Scholar
  78. Yu H, Frommer M, Robson MK, Meats AW, Shearman DC, Sved JA (2001) Microsatellite analysis of the Queensland fruit fly Bactrocera tryoni (Diptera: Tephritidae) indicates spatial structuring: implications for population control. Bull Entomol Res 91:139–147PubMedGoogle Scholar
  79. Yuval B, Hendrichs J (2000) Behavior of flies in the Genus Ceratitis. In: Aluja M, Norrbom AL (eds) Fruit flies (Tephritidae): phylogeny and evolution of behavior. CRC Press, Boca Ranton, Florida, pp 429–457Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. R. Malacrida
    • 1
  • L. M. Gomulski
    • 1
  • M. Bonizzoni
    • 1
  • S. Bertin
    • 1
  • G. Gasperi
    • 1
  • C. R. Guglielmino
    • 2
  1. 1.Dipartimento di Biologia AnimaleUniversità di PaviaPaviaItaly
  2. 2.Dipartimento di Genetica e MicrobiologiaUniversità di PaviaPaviaItaly

Personalised recommendations