, 130:267 | Cite as

Isolation and characterization of sex chromosome rearrangements generating male muscle dystrophy and female abnormal oogenesis in the silkworm, Bombyx mori

  • T. Fujii
  • T. Yokoyama
  • O. Ninagi
  • K. Kakehashi
  • Y. Obara
  • M. Nenoi
  • T. Ishikawa
  • K. Mita
  • T. Shimada
  • H. Abe
Original Paper


In deletion-mapping of W-specific RAPD (W-RAPD) markers and putative female determinant gene (Fem), we used X-ray irradiation to break the translocation-carrying W chromosome (W Ze ). We succeeded in obtaining a fragment of the W Ze chromosome designated as Ze W, having 3 of 12 W-RAPD markers (W-Bonsai, W-Yukemuri-S, W-Yukemuri-L). Inheritance of the Ze W fragment by males indicates that it does not include the Fem gene. On the basis of these results, we determined the relative positions of W-Yukemuri-S and W-Yukemuri-L, and we narrowed down the region where Fem gene is located. In addition to the Ze W fragment, the Z chromosome was also broken into a large fragment (Z1) having the + sch (1-21.5) and a small fragment (Z2) having the + od (1-49.6). Moreover, a new chromosomal fragment (Ze WZ2) was generated by a fusion event between the Ze W and the Z2 fragments. We analyzed the genetic behavior of the Z1 fragment and the Ze WZ2 fragment during male (Z/Z1 Ze WZ2) and female (Z1 Ze WZ2/W) meiosis using phenotypic markers. It was observed that the Z1 fragment and the Z or the W chromosomes separate without fail. On the other hand, non-disjunction between the Ze WZ2 fragment and the Z chromosome and also between the Ze WZ2 fragment and the W chromosome occurred. Furthermore, the females (2A: Z/Ze WZ2/W) and males (2A: Z/Z1) resulting from non-disjunction between the Ze WZ2 fragment and the W chromosome had phenotypic defects: namely, females exhibited abnormal oogenesis and males were flapless due to abnormal indirect flight muscle structure. These results suggest that Z2 region of the Z chromosome contains dose-sensitive gene(s), which are involved in oogenesis and indirect flight muscle development.


Haploinsufficient Indirect flight muscle Dosage compensation Silkworm Bombyxmori W chromosome Z chromosome Sex chromosome Translocation Deletion-mapping 



This work was supported by grants from BRAIN (to. K. M.), Grants-in-Aid for Scientific Research, MEXT (Nos. 17052006, 16011263, and 17018007) and JSPS (No. 16208006), the Insect Technology Project, MAFF/NIAS (No. 1216), and the National Bioresource Project, MEXT.


  1. Abe H, Ohbayashi F, Harada T, Shimada T, Yokoyama T, Kobayashi M, Oshiki T (1996) An application of DNA diagnosis method for preservation of the susceptible strain to densonucleosis virus type-1 of the silkworm, Bombyx mori. J Sericult Sci Jpn 65:196–200 (in Japanese with English summary)Google Scholar
  2. Abe H, Kanehara M, Terada T, Ohbayashi F, Shimada T, Kawai S, Suzuki M, Sugasaki T, Oshiki T (1998) Identification of novel random amplified polymorphic DNAs (RAPDs) on the W chromosome of the domesticated silkworm, Bombyx mori, and the wild silkworm, B. mandarina, and their retrotransposable element-related nucleotide sequences. Genes Genet Syst 73:243–254PubMedCrossRefGoogle Scholar
  3. Abe H, Seki M, Ohbayashi F, Tanaka N, Yamashita J, Fujii T, Yokoyama T, Takahashi M, Banno Y, Sahara K, Yoshido A, Ihara J, Yasukochi Y, Mita K, Ajimura M, Suzuki MG, Oshiki T, Shimada T (2005a) Partial deletions of the W chromosome due to reciprocal translocation in the silkworm Bombyx mori. Insect Mol Biol 14:339–352CrossRefGoogle Scholar
  4. Abe H, Mita K, Yasukochi Y, Oshiki T, Shimada T (2005b) Retrotransposable elements on the W chromosome of the silkworm, Bombyx mori. Cytogenet Genome Res 110:144–151CrossRefGoogle Scholar
  5. Bainbridge D (2003) The X in Sex. Harvard University Press, LondonGoogle Scholar
  6. Ball E, Ball SP, Sparrow JC (1985) A mutation affecting larval muscle development in Drosophila melanogaster. Dev Genet 6:77–92CrossRefGoogle Scholar
  7. Bernstein AI, Mogami K, Donady JJ, Emerson CP (1983) Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. Nature 302:393–397PubMedCrossRefGoogle Scholar
  8. Bortoluzzi S, Rampoldi L, Simionati B, Zimbello R, Barbon A, d’Alessi F, Tiso N, Pallavicini A, Toppo S, Cannata N, Valle G, Lanfranchi G, Danieli GA (1998) A comprehensive, high-resolution genomic transcript map of human skeletal muscle. Genome Res 8:817–825PubMedGoogle Scholar
  9. Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137:151–164PubMedGoogle Scholar
  10. Doira H (1978) Genetic stocks of the silkworm: In: Tazima Y (ed), The silkworm, an important laboratory tool. Kodansha Ltd., JapanGoogle Scholar
  11. Eric JV, Bruce TL (2004) How mammalian sex chromosome acquired their peculiar gene content. BioEssays 26:159–169CrossRefGoogle Scholar
  12. Fujii H, Banno Y, Doira H, Kihara H, Kawaguchi Y (1998) Genetical stocks and mutations of Bombyx mori: important genetic resources. 2nd edn. Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka, p54Google Scholar
  13. Fujii T, Tanaka N, Yokoyama T, Ninagi O, Oshiki T, Ohnuma A, Tazima Y, Banno Y, Ajimura M, Mita K, Seki M, Ohbayashi F, Shimada T, Abe H (2006) The female-killing chromosome of the silkworm, Bombyx mori, was generated by translocation between Z and W chromosomes. Genetica 127:253–265PubMedCrossRefGoogle Scholar
  14. Fujiwara H, Ninaki O, Kobayashi M, Kusuda J, Maekawa H (1991) Chromosomal fragment responsible for genetic mosaicism in larval body marking of the silkworm, Bombyx mori. Genet Res 57:11–16Google Scholar
  15. Fujiwara H, Maekawa H (1994) RFLP analysis of chromosomal fragments in genetic mosaic strain of Bombyx mori. Chromosoma 103:468–474PubMedGoogle Scholar
  16. Hasimoto H (1933) The role of the W-chromosome in the sex determination of Bombyx mori. Jpn J Genet 8:245–247 (in Japanese)Google Scholar
  17. Hasimoto H (1948) Sex-limited zebra, an X-ray mutation in the silkworm. J Sericult Sci Jpn 16:62–64 (in Japanese with English summary)Google Scholar
  18. Hurst LD, Randerson JP (1999) An exceptional chromosome. Trends Genet 15:383–385PubMedCrossRefGoogle Scholar
  19. Kawamura N (1988) The egg size determining gene, Esd, is a unique morphological marker on the W chromosome of Bombyx mori. Genetica 76:195–201CrossRefGoogle Scholar
  20. Kawaguchi Y (1995) Genetic analysis of the soft and elongated trunk mutant in Bombyx mori. J Sericult Sci Jpn 64:31–34Google Scholar
  21. Koike Y, Mita K, Suzuki MG, Maeda S, Abe H, Osoegawa K, deJong PJ, Shimada T (2003) Genomic sequence of a 320-kb segment of the Z chromosome of Bombyx mori containing a kettin ortholog. Mol Gen Genomics 269:137–149Google Scholar
  22. Kondoh Y, Obara Y (1982) Anatomy of motoneurones innervating mesothoracic indirect flight muscles in the silkworm, Bombyx mori. J Exp Biol 98:23–27Google Scholar
  23. Marec F, Mirchi R (1990) Genetic control of the pest Lepidoptera: gamma-ray induction of translocations between sex chromosomes of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J Stored Prod Res 26:109–116CrossRefGoogle Scholar
  24. Marec F (1996) Synaptonemal complex in insects. Int J Insect Morphol Embryol 25:205–233CrossRefGoogle Scholar
  25. Marec F, Neven LG, Robinson AS, Vreysen M, Goldsmith MR, Nagaraju J, Franz G (2005) Development of Genetic sexing strains in Lepidoptera: from traditional to transgenic approaches. J Econ Entomol 98:248–259PubMedCrossRefGoogle Scholar
  26. Marec F, Tothova A, Sahara K, Traut W (2001) Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity 87:659–671PubMedCrossRefGoogle Scholar
  27. Mogami K, O’Donnell PT, Bernstein SI, Wright TRF, Emerson CP (1986) Mutations of the Drosophila myosin heavy-chain gene: effects on transcription, myosin accumulation, and muscle function. Proc Natl Acad Sci USA 83:1393–1397PubMedCrossRefGoogle Scholar
  28. Mogami K, Hotta Y (1981) Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mol Gen Genet 183:409–417PubMedCrossRefGoogle Scholar
  29. Murakami A, Imai HT (1974) Cytological evidence for holocentric chromosomes of the silkwoms, Bombyx mori and B. mandarina (Bombycidae, Lepidoptera). Chromosoma 47:167–178PubMedCrossRefGoogle Scholar
  30. Nagaraja GM, Mahesh G, Satish V, Madhu M, Muthulakshmi M, Nagaraju J (2005) Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori. Heredity 95:148–157PubMedCrossRefGoogle Scholar
  31. Newman SM, Wright TRF (1983) lethal(1)fibrillardysgenesis. A mutation affecting muscle development in the embryo of Drosophila melanogaster. Dev Genet 4:329–345Google Scholar
  32. Ohnuma A (1988) Synthesis of balanced sex-linked lethal strain in the silkworm. Rep Silk Sci Res Inst (Tokyo, Japan) 36:17–25 (in Japanese with English summary)Google Scholar
  33. Sahara K, Yoshido A, Kawamura N, Ohnuma A, Abe H, Mita K, Oshiki T, Shimada T, Asano S-I, Bando H, Yasukochi Y (2003) W-derived BAC probes as a new tool for identification of the W chromosome and its aberrations in Bombyx mori. Chromosoma 112:48–55PubMedCrossRefGoogle Scholar
  34. Saifi GM, Chandra HS (1999) An apparent excess of sex- and reproduction-related genes on the human X chromosome. Proc R Soc Lond B Biol Sci 266:203–209CrossRefGoogle Scholar
  35. Strunnikov VA (1975) Sex control in silkworms. Nature 255:111–113PubMedCrossRefGoogle Scholar
  36. Sturtevant AH (1915) No crossing over in the female of the silkworm moth. Am Nat 49:42–44CrossRefGoogle Scholar
  37. Suzuki MG, Shimada T, Kobayashi M (1998) Absence of dosage compensation at the transcription level of a sex-linked gene in a female heterogametic insect, Bombyx mori. Heredity 81:275–283PubMedCrossRefGoogle Scholar
  38. Suzuki MG, Shimada T, Kobayashi M (1999) Bm kettin, homologue of the Dorosophila kettin gene, is located on the Z chromosome in Bombyx mori and is not dosage compensated. Heredity 82:170–179PubMedCrossRefGoogle Scholar
  39. Tanaka Y (1913a) A study of mendelian factors in the silkworm, Bombyx mori. J Coll Agric Sapporo 5:61–113Google Scholar
  40. Tanaka Y (1913b) Gametic coupling and repulsion in silkworms. J Coll Agric Sapporo 5:115–148Google Scholar
  41. Tanaka Y (1916) Genetic studies in the silkworm. J Coll Agric Sapporo 6:1–33Google Scholar
  42. Tanaka Y (1923) Inheritance of elongate (a preliminary note). Sanshikaiho 32:21–23Google Scholar
  43. Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosome probed by comparative genomic hybridization. Chromosoma 108:173–180PubMedCrossRefGoogle Scholar
  44. Warmke JW, Kreuz AJ, Falkenthal S (1989) Co-localization to chromosome bands 99E1-3 of the Drosophila melanpgaster myosin light chain-2 gene and a haplo-insufficient locus that affects flight behavior. Genetics 122:139–151PubMedGoogle Scholar
  45. Yokoyama T, sugai E, Oshiki T, Pan Q (1990) Induction of the triploid silkworm, Bombyx mori, by the hot-water treatment to the inseminated eggs immediately after oviposition. J Sericult Sci Jpn 59:281–224Google Scholar
  46. Yoshido A, Bando H, Yasukochi Y, Sahara K (2005) The Bombyx mori karyotype and the assignment of linkage groups. Genetics 170(2):675–685PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • T. Fujii
    • 1
  • T. Yokoyama
    • 1
  • O. Ninagi
    • 1
  • K. Kakehashi
    • 1
  • Y. Obara
    • 2
  • M. Nenoi
    • 3
  • T. Ishikawa
    • 3
  • K. Mita
    • 4
  • T. Shimada
    • 5
  • H. Abe
    • 1
  1. 1.Department of Biological Production, Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
  2. 2.Department of Veterinary, Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchu, TokyoJapan
  3. 3.National Institute of Radiological SciencesTibaJapan
  4. 4.National Institute of Agrobiological ScienceIbarakiJapan
  5. 5.Department of Agricultural and Environmental Biology, Graduate school of Agricultual and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations