, Volume 128, Issue 1–3, pp 449–453 | Cite as

Differential organellar inheritance in Passiflora’s (Passifloraceae) subgenera

  • Valéria C. Muschner
  • Aline P. Lorenz-Lemke
  • Maurizio Vecchia
  • Sandro L. Bonatto
  • Francisco M. Salzano
  • Loreta B. Freitas


Four chloroplast (cp), one mitochondrial (mt), and one ribosomal nuclear (ITS) DNA regions were studied in four artificial and one natural interspecific Passiflora hybrids. The ITS results confirmed their hybrid origin and all mtDNAs were maternally inherited. The same, however, was not true for cpDNA. The four hybrids (three artificial and one natural) derived from species of the Passiflora subgenus showed a cpDNA paternal inheritance, while the one involving taxa of the Decaloba subgenus gave evidence of maternal transmission. These results are of significance for the ongoing studies which are being performed on the molecular evolution of this genus and furnish important background for investigations aimed at clarifying the factors which determine cpDNA inheritance.


Plastid inheritance mtDNA inheritance Passiflora Genetic markers Interspecific hybrids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APG II (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linean Soc 141:399–436Google Scholar
  2. Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148PubMedCrossRefGoogle Scholar
  3. Chiang T-Y, Hong K-H, Peng C-I (2001) Experimental hybridization reveals biased inheritance of the internal transcribed spacer of the nuclear ribosomal DNA in Begonia×taipeiensis. J Plant Res 114:343–351CrossRefGoogle Scholar
  4. Courriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458CrossRefGoogle Scholar
  5. Desfeux C, Lejeune B (1996) Systematics of Euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequence. CR Acad Sci 319:351–358Google Scholar
  6. Duminil J, Pemonge M-H, Petit RJ (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430CrossRefGoogle Scholar
  7. Dumolin-Lapègue S, Pemonge MH, Petit RJ (1998) Association between chloroplast and mitochondrial lineages in oaks. Mol Biol Evol 15:1321–1331PubMedGoogle Scholar
  8. Dunn IS, Blattner FR (1987) Charons 36 to 40: multi-enzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res 15:2677–2698PubMedGoogle Scholar
  9. Feuillet CP, MacDougal JM (2003) A new infrageneric classification of Passiflora. Passiflora 13:34–38Google Scholar
  10. Fuertes Aguilar J, Nieto Feliner G (2003) Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (Armeria, Plumbaginaceae). Mol Phylogenet Evol 28:430–447PubMedCrossRefGoogle Scholar
  11. Fuertes Aguilar J, Rosselló JA, Nieto Feliner G (1999) Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artificial hybrids of Armeria (Plumbaginaceae). Mol Ecol 8:1341–1346PubMedCrossRefGoogle Scholar
  12. Hagemann R (1992) Plastid genetics in higher plants. In: Herrmann RG (ed) Cell organelles. Springer, New York, pp 66–96Google Scholar
  13. Harris SA, Ingram R (1991) Chloroplast DNA and biosystematics: the effects of intraspecific diversity and plastid transmission. Taxon 40:393–412CrossRefGoogle Scholar
  14. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  15. Lorenz-Lemke AP, Muschner VC, Bonatto SL, Cervi AC, Salzano FM, Freitas LB (2005) Phylogeographic inferences concerning evolution of Brazilian Passiflora actinia and P elegans (Passifloraceae) based on ITS (nr DNA) variation. Ann Bot 95:799–806PubMedCrossRefGoogle Scholar
  16. Mogensen HL (1996) The hows and whys of cytoplasmic inheritance in seed plants Am J Bot 83:383–404CrossRefGoogle Scholar
  17. Mohanty A, Martín JP, González LM, Aguinagalde I (2003) Association between chloroplast DNA and mitochondrial DNA haplotypes in Prunus spinosa L (Rosaceae) populations across Europe. Ann Bot 92:749–755PubMedCrossRefGoogle Scholar
  18. Moreira CD, Gmitter JW, Huang S, Ortega VM (2002) Inheritance of organelle DNA sequences in CitrusPoncirus intergeneric cross. J Hered 93:174–178PubMedCrossRefGoogle Scholar
  19. Muschner VC, Lorenz AP, Cervi AC, Bonatto SL, Souza-Chies TT, Salzano FM, Freitas LB (2003) A first molecular phylogenetic analysis of Passiflora (Passifloraceae). Am J Bot 90:1229–1238Google Scholar
  20. Nagata N, Sodmergen C, Saito A, Sakai H, Kuroiwa T (1997) Preferential degradation of plastid DNA with preservation of mitochondrial DNA in the sperm cells of Pelargonium zonale during pollen development. Protoplasma 197:217–229CrossRefGoogle Scholar
  21. Owens JN, Morris SJ (1990) Cytological basis for cytoplasmic inheritance in Pseudotsuga menziesii. I. Pollen tube and archegonial development. Am J Bot 77:433–445CrossRefGoogle Scholar
  22. Owens JN, Catalano GL, Morris SJ, Aitken-Citristie J (1995) The reproductive biology of kauri (Agathis australis). II. Male gametes, fertilization, and cytoplasmic inheritance. Int J Plant Sci 156:404–416CrossRefGoogle Scholar
  23. Petit RJ, Vendramin GG (2006) Phylogeography of organelle DNA in plants: an introduction. In Weiss S, Ferrand N (eds) Phylogeography of southern European refugia. Kluwer, New York (in press)Google Scholar
  24. Roy A, Frascaria N, Mackay J, Bousquet J (1992) Segregating random amplified polymorphic DNAs (RAPDs) in Betula alleghaniensis. Theor Appl Genet 85:173–180CrossRefGoogle Scholar
  25. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefGoogle Scholar
  26. Shore JS, Triassi M (1998) Paternally biased cpDNA inheritance in Turnera ulmifolia (Turneraceae). Am J Bot 85:328–332CrossRefGoogle Scholar
  27. Sodmergen, Zhang Q, Zhang Y, SakamotoW, Kuroiwa T (2002) Reduction in amounts of mitochondrial DNA in the sperm cells as a mechanism for maternal inheritance in Hordeum vulgare. Planta 216:235–244PubMedCrossRefGoogle Scholar
  28. Souza-Chies TT, Bittar G, Nadot S, Carter L, Besin E, Lejeune B (1997) Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst Evol 204:109–123CrossRefGoogle Scholar
  29. Taberlet PL, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  30. Ulmer T, Macdougal JM (2004a) Passiflora hybrids and cultivars.
  31. Ulmer T, Macdougal JM (2004b) Passiflora: passionflowers of the world. Timber Press, Portland Oregon, USAGoogle Scholar
  32. Yang TW, Yang YA, Xiong Z (2000) Paternal inheritance of chloroplast DNA in interspecific hybrids in the genus Larrea (Zigophyllaceae). Am J Bot 87:1452–1458PubMedCrossRefGoogle Scholar
  33. Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiol 44:941–951PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Valéria C. Muschner
    • 1
  • Aline P. Lorenz-Lemke
    • 1
  • Maurizio Vecchia
    • 2
  • Sandro L. Bonatto
    • 3
  • Francisco M. Salzano
    • 1
  • Loreta B. Freitas
    • 1
  1. 1.Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de BiociênciasUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Maurizio VecchiaRipalta Cremasca (CR)Italy
  3. 3.Centro de Biologia Genômica e Molecular, Faculdade de BiociênciasPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations