, Volume 128, Issue 1–3, pp 227–239 | Cite as

Genetic variation in two land snails, Cepaea nemoralis and Succinea putris (Gastropoda, Pulmonata), from sites differing in heavy metal content

  • Kurt Jordaens
  • Hans De Wolf
  • Natalie Van Houtte
  • Bart Vandecasteele
  • Thierry Backeljau


Allozyme variation was determined in two land snail species (Cepaea nemoralis and Succinea putris) from four localities in northern Belgium. In each locality we selected a polluted and a nearby, less-polluted, reference plot. We examined whether (i) genetic variability differed between the polluted and reference plots, (ii) populations from polluted plots experienced recent bottlenecks, and (iii) certain allele or genotype frequencies were associated with the pollution. Our results suggest that (i) about 13% of the genetic differentiation in C. nemoralis and 5% in S. putris was due to differences among polluted and reference plots, (ii) polluted and reference plots had comparable levels of genetic variation, but in C. nemoralis observed heterozygosities were higher in polluted plots, (iii) most plots showed significant evidence for recent bottlenecks, irrespective of the degree of pollution, so that bottlenecks seem poor indicators of pollution-induced stress in land snails, and (iv) mutagenic or pollution-induced modifications did not seem to account for new allozyme variants in polluted sites. The observed patterns of genetic variation may be explained by the action of genetic drift, pollution-mediated selection, restricted gene flow, or a combination of these processes.


allozymes Cepaea nemoralis Gastropoda heavy metals isoelectric focusing land snails pollution polyacrylamide gel electrophoresis population genetics Succinea putris 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnaud, J.-F., Madec, L., Bellido, A., Guiller, A. 1999Microspatial genetic structure in the land snail Helix aspersa (Gastropoda: Helicidae)Heredity83110119PubMedCrossRefGoogle Scholar
  2. Backeljau, T., Ahmadyar, S.Z., Selens, M., Rompaey, J., Verheyen, W. 1987Comparative electrophoretic analyses of three European Carinarion species (Mollusca, Pulmonata, Arionidae)Zool. Scr.16209222CrossRefGoogle Scholar
  3. Backeljau, T., Breugelmans, K., Leirs, H., Rodriguez, T., Sherbakov,  D., Sitnikova, T., Timmermans, J.-M., Goethem, J.L., Verheyen, E. 1994Application of isoelectric focusing in molluscan systematicsThe Nautilus2156167Google Scholar
  4. Bayne, C.J. 1974Physiology of the pulmonate reproductive tract: location of spermatozoa in isolated, self-fertilizing succinid snailsThe Veliger16169175Google Scholar
  5. Belfiore, N.M., Anderson, S.L. 2001Effects of contaminants on genetic patterns in aquatic organisms: a reviewMutat. Res. Rev. Mutat. Res.48997122Google Scholar
  6. Benton, M.J., Guttman, S.I. 1992aAllozyme genotype and differential resistance to mercury pollution in the caddisfly, Nectopsyche albida. I. Single locus genotypesCan. J. Fish. Aquat. Sci.49142146CrossRefGoogle Scholar
  7. Benton, M.J., Guttman, S.I. 1992bAllozyme genotype and differential resistance to mercury pollution in the caddisfly, Nectopsyche albida. II. Multilocus genotypesCan. J. Fish. Aquat. Sci.49147149Google Scholar
  8. Benton, M.J., Malott, M.L., Trybula, J., Dean, D.M., Guttman, S.I. 2002Genetic effects of mercury contamination on aquatic snail populations: allozyme genotypes and DNA strand breakageEnviron. Toxicol. Chem.21584589PubMedCrossRefGoogle Scholar
  9. Bickham, J.W., Smolen, M.J. 1994Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicologyEnviron. Health Persp.1022528Google Scholar
  10. Bickham, J.W., Sandhu, S., Hebert, P.D.N., Chikhi, L., Athwal,  R. 2000Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicologyMutat. Res.4633351PubMedCrossRefGoogle Scholar
  11. Burdon, R.H., 1999. Genes and the environment. Taylor & FrancisGoogle Scholar
  12. Chagnon, N.L., Guttman, S.I. 1989aDifferential survivorship of allozyme genotypes in mosquitofish populations exposed to copper or cadmiumEnviron. Toxicol. Chem.8319326Google Scholar
  13. Chagnon, N.L., Guttman, S.I. 1989bBiochemical analysis of allozyme copper and cadmium tolerance in fish using starch gel electrophoresisEnviron. Toxicol. Chem.811411147Google Scholar
  14. Cœurdassier, M., Gomot-de Vaufleury, A., Badot, P.-M. 2000Dose-dependent growth inhibition and bioaccumulation of hexavalent chromium in the land snail Helix aspersa aspersa Environ. Toxicol. Chem.1925712578CrossRefGoogle Scholar
  15. Marais, B.D., Dowling, T.E., Minckley, W.L. 1993Post-perturbartion genetic changes in populations of endangered Virgin River chubsConserv. Biol.7334341CrossRefGoogle Scholar
  16. Wolf, H., Blust, R., Backeljau, T. 2004The use of RAPD in ecotoxicologyMutat. Res. Rev. Mutat. Res.566249262Google Scholar
  17. D’Surney, S.J., Shugart, L.R., Theodorakis, C.W. 2001Genetic markers and genotyping methodologies: an overviewEcotoxicology10201204PubMedCrossRefGoogle Scholar
  18. Duan, Y., Guttman, S.I., Oris, J.T., Bailer, J.A. 2000Genotype and toxicity relationships among Hyalella azteca: I. Acute exposure to metals or low pHEnviron. Toxicol. Chem.1914141421CrossRefGoogle Scholar
  19. Facemire, C.F., Gross, T.S., Guillette, L.J. 1995Reproductive impairment in the Florida panther – Nature or nurture?Environ Health Perspect.1037986PubMedGoogle Scholar
  20. Frati, F., Fanciulli, P.P., Posthuma, L. 1992Allozyme variation in reference and metal-exposed natural populations of Orchesella cincta (Insecta: Collembola)Biochem. Syst. Ecol.20297310CrossRefGoogle Scholar
  21. Gillespie, R.B., Guttman, S.I. 1989Effects of contaminants on the frequencies of allozymes in populations of the central stonerollerEnviron. Toxicol. Chem.8309317Google Scholar
  22. Gillespie, R.B. & S.I. Guttman, 1993. Allozyme frequency analysis of aquatic populations as an indicator of contaminant-induced impacts, pp. 134–145 in Environmental Toxicology and Risk Assessment, 2nd volume ASTM STP 1173, edited by J. Gorsuch, F.J. Dwyer, C.G. Ingersool & T.W. LaPointe. American Society for Testing and MaterialsGoogle Scholar
  23. Gillespie, R.B. & S.I. Guttman, 1999. Chemical-induced changes in the genetic structure of populations: Effects on allozymes, pp. 55–77 in Genetics and Ecotoxicology, edited by V.E. Forbes. Taylor & FrancisGoogle Scholar
  24. Goudet, J., 2002. FSTAT Version ManualGoogle Scholar
  25. Guttman, S.I. 1994Population genetic structure and ecotoxicologyEnviron. Health Persp.10297100Google Scholar
  26. Harris, H. & Hopkinson, D.A., 1976. Handbook of Enzyme Electrophoresis in Human Genetics. North Holland Pub. CoGoogle Scholar
  27. Hebert, P.D.N., Luiker, M.M. 1996Genetic effects of contaminant exposure – towards an assessment of impacts on animal populationsSci. Total Environ.1912358PubMedCrossRefGoogle Scholar
  28. Jordaens, K., Riel, P., Verhagen, R., Backeljau, T. 1999Food-induced esterase electromorphs in Carinarion spp. and their effects on taxonomic data analysis (Gastropoda, Pulmonata, Arionidae)Electrophoresis20473479PubMedCrossRefGoogle Scholar
  29. Kerney, M., 1999. Atlas of the Land and Freshwater Molluscs of Britain and Ireland. Harley BooksGoogle Scholar
  30. Laskowski, R., Hopkin, S.P. 1996Effect of Zn, Cu, Pb, and Cd on fitness in snails (Helix aspersa)Ecotoxicol. Environ. Saf.345969PubMedCrossRefGoogle Scholar
  31. Lavie, B., Nevo, E. 1982Heavy metal selection of phosphoglucose isomerase allozymes in marine gastropodsMar. Biol.711722CrossRefGoogle Scholar
  32. Lavie, B., Nevo, E. 1986Genetic selection of homozygote allozyme genotypes in marine gastropods exposed to cadmium pollutionSci. Total Environ.579198PubMedCrossRefGoogle Scholar
  33. Lewin, R. 1987The surprising genetics of bottlenecked fliesScience23513251327PubMedCrossRefGoogle Scholar
  34. Luikart, G., Cornuet, J.-M., Allendorf, F.W., Sherwin, W.B. 1998Distortion of allele frequency distributions provides a test for recent population bottlenecksJ. Hered.89238247PubMedCrossRefGoogle Scholar
  35. Marchand, J., Tanguy, A., Laroche, J., Quiniou, L., Moraga,  D. 2003Responses of European flounder Platichthys flesus populations to contamination in different estuaries along the Atlantic coast of FranceMar. Ecol. Prog. Ser.260273284Google Scholar
  36. Moran, M.D. 2003Arguments for rejecting the sequential Bonferroni in ecological studiesOikos100403405CrossRefGoogle Scholar
  37. Murdoch, M.H., Hebert, P.D.N. 1994Mitochondrial DNA diversity of brown bullhead from contaminated and relatively pristine sites in the Great LakeswEnviron. Toxicol. Chem.1312811289Google Scholar
  38. Nei, M. 1978Estimation of average heterozygosity and genetic distance from a small number of individualsGenetics89583590PubMedGoogle Scholar
  39. Notten, M.J.M., Oosthoek, A.J.P., Rozema, J., Aerts, R. 2005Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradientEnviron. Pollut.138178190PubMedCrossRefGoogle Scholar
  40. Olsson, I., Axiö-Fredriksson, U.B., Degerman, M., Olsson, B. 1988Fast horizontal electrophoresis isoelectric focusing and polyacrylamide gel electrophoresis using PhastSystemElectrophoresis91622PubMedCrossRefGoogle Scholar
  41. Pfau, R.S., McBee, K., Bussche, R.A. 2001Genetic diversity of the major histocompatibility complex of cotton rats (Sigmodon hispidus) inhabiting an oil refinery complexEnviron. Toxicol. Chem.2022242228PubMedCrossRefGoogle Scholar
  42. Pfenninger, M., 2002. Relationship between microspatial population genetic structure and habitat heterogeneity in Pomatias elegans (O.F. Müller 1774) (Caenogastropoda, Pomatiasidae). Biol. J. Linn. Soc. 76: 565–575Google Scholar
  43. Pfleger, V. & Chatfield, J., 1983. A Guide to Snails of Britain and Europe. Hamlyn Publishing Group LtdGoogle Scholar
  44. Piry, S., Luikart, G., Cornuet, J.M. 1999BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency dataJ. Hered.90502503CrossRefGoogle Scholar
  45. Raymond, M., Rousset, F. 1995GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicismJ. Hered.86248249Google Scholar
  46. Rice, W.R. 1989Analyzing tables of statistical testsEvolution43223225CrossRefGoogle Scholar
  47. Schneider, S., Kueffer, J.M., Roessli, D., Excoffier, L. 1997ARLEQUIN, a Software for Population Genetics Data Analysis, Version 2.000University of GenevaGenevaGoogle Scholar
  48. Schweiger, O., Frenzel, M., Durka, W. 2004Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda: Helicidae)Mol. Ecol.1336453655PubMedCrossRefGoogle Scholar
  49. Sloss, B.L., Romano, M.A., Anderson, R.V. 1998Pollution-tolerant allele in fingernail clams (Musculium transversum)Arch. Environ. Contam. Toxicol.35302308PubMedCrossRefGoogle Scholar
  50. Sörensen, T. 1948A method for establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commonsK. Danske Vid. Selsk. Biol. Skr.5134Google Scholar
  51. Statsoft, 2000. Statistica for Windows, v. 5.1. Computer program manual. Tulsa, StatSoft IncGoogle Scholar
  52. Swofford, D.L., Selander, R.B. 1981Biosys-1 – A Fortran program for the comprehensive analysis of electrophoretic data in population-genetics and systematicsJ. Hered.72281283Google Scholar
  53. Theodorakis, C.W. 2003Establishing causality between population genetic alterations and environmental contamination in aquatic organismsHum. Ecol. Risk Assessm.93758Google Scholar
  54. Theodorakis, C.W., Bickham, J.W., Lamb, T. 2001Integration of genotoxicity and population genetic analysis in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada test site, USAEnviron. Toxicol. Chem.20317326PubMedCrossRefGoogle Scholar
  55. Tranvik, L., Sjögren, M., Bengtsson, G. 1994Allozyme polymorphism and protein profile in Orchesella bifasciata (Collembola): indicative of extended metal pollution?Biochem. Syst. Ecol.221323CrossRefGoogle Scholar
  56. Ugolini, A., Borghini, F., Calosi, P., Bazzicalupo, M., Chelazzi,  G., Focardi, S. 2004Mediterranean Talitrus saltator (Crustacea, Amphipoda) as a biomonitor of heavy metals contaminationMar. Pollut. Bull.48526532PubMedCrossRefGoogle Scholar
  57. Vandecasteele, B., Quataert, P., Vos, B., Tack, F.M.G. 2004Assessment of the pollution status of alluvial plains: a case-study for the dredged sediment-derived soils along the Leie riverArch. Environ. Contam. Toxicol.471422PubMedCrossRefGoogle Scholar
  58. Weir, B.S., 1996. Genetic Data Analysis II. Sinauer AssociatesGoogle Scholar
  59. Woodward, L.A., Mulvey, M., Newman, M.C. 1996Mercury contamination and population-level responses in chironomids: can allozyme polymorphism indicate exposure?Environ. Toxicol. Chem.1513091316CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Kurt Jordaens
    • 1
  • Hans De Wolf
    • 2
  • Natalie Van Houtte
    • 1
  • Bart Vandecasteele
    • 3
  • Thierry Backeljau
    • 1
    • 4
  1. 1.Department of Biology, Evolutionary Biology GroupUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Biology, Ecophysiology, Biochemistry & ToxicologyUniversity of AntwerpAntwerpBelgium
  3. 3.Institute for Forestry and Game ManagementGeraardsbergenBelgium
  4. 4.Royal Belgian Institute of Natural SciencesBrusselsBelgium

Personalised recommendations