, Volume 128, Issue 1–3, pp 95–108 | Cite as

Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences

  • Deborah A. Triant
  • J. Andrew DeWoody


Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation.


chromosome rearrangements mammal mitochondrial genomics nucleotide substitutions rodent speciation rate 



mitochondrial DNA


nuclear copies of mitochondrial fragments


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abegg, C., Thierry, B. 2002Macaque evolution and dispersal in insular south-east AsiaBiol. J. Linn. Soc.75555576CrossRefGoogle Scholar
  2. Avise, J.C. 2000PhylogeographyHarvard University PressCambridge, MassachusettsGoogle Scholar
  3. Avise, J.C. 2004Molecular Markers, Natural History, and EvolutionSinauer AssociatesSunderland, MAGoogle Scholar
  4. Avise, J.C., Walker, D., Johns, G.C. 1998Speciation durations and Pleistocene effects on vertebrate and phylogeographyProc. R. Soc. Lond. B.26517071702CrossRefGoogle Scholar
  5. Baker, R.J., Hamilton, M.J., Bussche, R.A., Wiggins, L.E., Sugg, D.W., Smith, M.H., Lomakin, M.D., Gaschak, S.P., Bundova, E.G., Rudenskya, G.A., Chesser, R.K. 1996Small mammals from the most radioactive sites near the Chernobyl nuclear power plantJ. Mammal.77155170CrossRefGoogle Scholar
  6. Barnes, L.G. 1976Outline of eastern North Pacific fossil Cetacean assemblagesSyst. Zool.25321343CrossRefGoogle Scholar
  7. Barnes, L.G., Domning, D.P., Ray, C.E. 1985Status of studies on fossil marine mammalsMar. Mammal. Sci.11553CrossRefGoogle Scholar
  8. Baskin, J.A. 1986The late Miocene radiation of neotropical sigmodontine rodents in North AmericaFlanagan, K.M.Lillegraven, J.A. eds. Vertebrates, Phylogeny and PhilosophyUniversity of WyomingLaramie, WY287303Google Scholar
  9. Baverstock, P.R., Adams, M., Maxson, L.R., Yosida, T.H. 1983Genetic differentiation among karyotypic forms of the black rat, Rattus rattusGenetics105969983PubMedGoogle Scholar
  10. Belfiore, N.M., Hoffman, F.G., Baker, R.J., DeWoody, J.A. 2003The use of nuclear and mitochondrial single nucleotide polymorphisms to identify cryptic speciesMol. Ecol.1220112017PubMedCrossRefGoogle Scholar
  11. Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V.M., Moriwaki, K., Nevo, E., Thaler, L. 1984Biochemical diversity and evolution in the genus MusBiochem. Genet.22275303PubMedCrossRefGoogle Scholar
  12. Brown, W.M., George, M.,Jr., Wilson, A.C. 1979Rapid evolution of animal mitochondrial DNAProc. Natl. Acad. Sci. USA7619671971PubMedCrossRefGoogle Scholar
  13. Brown, W.M., Prager, E.M., Wang, A., Wilson, A.G. 1982Mitochondrial DNA sequencing of primates: tempo and mode of evolutionJ. Mol. Evol.18225239PubMedCrossRefGoogle Scholar
  14. Burgos, M., Jiménez, R., la Guardia, R. 1989Comparative study of G- and C-banded chromosomes of five species of MicrotidaeGenetica78312CrossRefGoogle Scholar
  15. Castillo, A.H., Cortinas, M.N., Lessa, E.P. 2005Rapid diversification of South American tuco-tucos (Ctenomys; Rodentia, Ctenomyidae): Contrasting mitochondrial and nuclear intron sequencesJ. Mammal.86170179CrossRefGoogle Scholar
  16. Chaline, J., Brunet-Lecomte, P., Montuire, S., Viriot, L., Courant, F. 1999Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary dataAnn. Zool. Fenn.36239267Google Scholar
  17. Charlesworth, B., Dempsey, N.D. 2001A model of the evolution of the unusual sex chromosome system of Microtus oregoni Heredity86387394PubMedCrossRefGoogle Scholar
  18. Colgan, D.J., Flannery, T.F. 1995A phylogeny of Indo-West Pacific megachiroptera based ribosomal DNASyst. Biol.44209220CrossRefGoogle Scholar
  19. Conroy, C.J., Cook, J.A. 2000Molecular systematics of a holarctic rodent (Microtus: Muridae)J. Mammal.6221245Google Scholar
  20. Cooper, G.M., M. Brudno, NISC Comparative Sequencing Program, E.D. Green, S. Batzoglou & A. Sidow, 2003. Quantitative estimates of sequence divergence for comparative analyses of mammalian genomes. Genome Res. 13: 813–820Google Scholar
  21. Delson, E. 1980Fossil macaques, phyletic relationships and a scenario of deploymentLindburg, D.G. eds. The Macaques: Studies in Ecology, Behavior and EvolutionVan Nostrand Reinhold CompanyNew York, NY1030Google Scholar
  22. DeWoody, J.A. 1999Nucleotide variation in the p53 tumor-suppressor gene of voles from Chernobyl, UkraineMutat. Res.4392536PubMedGoogle Scholar
  23. Dong, W. 1993The fossil records of deer in chinaOhtaishi, N.Sheng, H.-I. eds. Deer of China, Biology and ManagementElsevier Science PublishersAmsterdam95102Google Scholar
  24. Fernández, R., Barragán, M.J.L., Marchal, J.A., Martínez, S., Díaz la Guardia, R., Sánchez, A. 2002Mapping the SRY gene in Microtus cabrerae: a vole species with multiple SRY copies in males and femalesGenome45600603PubMedCrossRefGoogle Scholar
  25. Fink, S., Excoffier, L., Heckel, G. 2004Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptationsMol. Ecol.1335013514PubMedCrossRefGoogle Scholar
  26. Groves, C.P., Grubb, P. 1990MuntiaciadaeBubenik, G.A.Bubenik, A.B. eds. Horns, Pronghorns, and AntlersSpringer-VerlagNew York, NY134168Google Scholar
  27. Hafner, D.J., Sullivan, R.M. 1995Historical and ecological biogeography of Nearctic pikas (Lagomorpha: Ochtonidae)J. Mammal.76302321CrossRefGoogle Scholar
  28. Irwin, D.M., Kocher, T.D., Wilson, A.C. 1991Evolution of the cytochrome b gene of MammalsJ. Mol. Evol.32128144PubMedGoogle Scholar
  29. Jaarola, M., Searle, J.B. 2004A highly divergent mitochondrial DNA lineage of Microtus agrestis in southern EuropeHeredity92228234PubMedCrossRefGoogle Scholar
  30. Jaarola, M., Martínková, N., Gündüz, , Brunhoff, C., Zima, J., Nadachowski, A., Amori, G., Bulatova, N., Chondropoulos, B., Fraguedakis-Tsolis, S., Gonzalez-Esteban, J., Lopez-Fuster, M.J., Kandaurov, A.S., Kefelioglu, H., Mathias, M.D., Villate, I., Searle, J.B. 2004Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequencesMol. Phyl. Evol.33647663CrossRefGoogle Scholar
  31. Johns, G.C., Avise, J.C. 1998A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b geneMol. Biol. Evol.1514811490PubMedGoogle Scholar
  32. Kirsh, J.A.W., Flannery, T.F., Springer, M.S., Lapointe, F.-J. 1995Phylogeny of the Pteropodidae (Mammalia: Chiroptera) based on DNA hybridization, with evidence for bat monophylyAust. J. Zool.43395428CrossRefGoogle Scholar
  33. Korth, W.W. 1994The Tertiary Record of Rodents of North AmericaPlenum PressNew YorkGoogle Scholar
  34. Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M. 2001MEGA2: molecular evolutionary genetics analysis softwareBioinformatics1712441245PubMedCrossRefGoogle Scholar
  35. Kurtén, B. 1964The evolution of the polar bear, Ursus maritimus PhippsActa. Zool. Fenn.1081230Google Scholar
  36. Kurtén, B., Anderson, E. 1980Pleistocene Mammals of North AmericaColumbia University PressNew York, NYGoogle Scholar
  37. Lacey, E.A., Patton, J.L., Cameron, G.N. 2000Life Underground: The Biology of Subterranean RodentsUniversity of Chicago PressChicago, ILGoogle Scholar
  38. Levenson, H., Hoffman, R.S., Nadler, C.F., Deutsch, L., Freeman, S.D. 1985Systematics of the holarctic chipmunk (Tamias)J. Mammal.66219242CrossRefGoogle Scholar
  39. Li, W.-H. 1997Molecular EvolutionSinauer AssociatesSunderland, MAGoogle Scholar
  40. Lin, Y.-H., Waddel, P.J., Penny, D. 2002Pika and vole mitochondrial genomes increase support for both rodent monophyly and gliresGene294119129PubMedCrossRefGoogle Scholar
  41. Lindsay, E.H., Opdykem, N.D., Johnson, N.M. 1980Pliocene dispersal of the horse Equus and late Cenozoic mammalian dispersal eventsNature287135138CrossRefGoogle Scholar
  42. Ma, S., Wang, Y., Xu, L. 1985Taxonomic and phylogenetic studies on the genus Muntiacus Acta Theriol. Sin.5191209Google Scholar
  43. Maree, S., Grant, W.S. 1997Origins of horseshoe bats (Rhinolophus, Rhinolophidae) in Southern Africa: evidence from allozyme variabilityJ. Mammal. Evol.4195215CrossRefGoogle Scholar
  44. Martin, A.P., Palumbi, S.R. 1993Body size, metabolic rate, generation time, and the molecular clockProc. Natl. Acad. Sci. USA9040874091PubMedCrossRefGoogle Scholar
  45. Maruyama, T., Imai, H.T. 1981Evolutionary rate of the mammalian karyotypeJ. Theor. Biol.90111121PubMedCrossRefGoogle Scholar
  46. Mazurok, N.A., Rubtsova, N.V., Isaenko, A.A., Pavlova, M.E., Slobodyanyuk, S.Y., Nesterova, T.B., Zakian, S.M. 2001Comparative chromosome and mitochondrial DNA analyses and phylogenetic relationships within common voles (Microtus, Arvicolidae)Chrom. Res.9107120PubMedCrossRefGoogle Scholar
  47. Mead, J.J. 1987Quaternary records of pika, Ochotona, in North AmericaBoreas16165171CrossRefGoogle Scholar
  48. Mekada, K., Harada, M., Lin, L.K., Koyasu, K., Borodin, P.M., Oda, S.I. 2001Pattern of X-Y chromosome pairing in the Taiwan vole, Microtus kikuchii Genome442731PubMedCrossRefGoogle Scholar
  49. Modi, W.S. 1987Phylogenetic analyses of chromosomal banding patterns among the Neartcic Arvicolidae (Mammalia: Rodentia)Syst. Zool.36109136CrossRefGoogle Scholar
  50. Mouse Genome Sequencing Consortium2002Genome sequence of the brown Norway rat yields insights into mammalian evolutionNature428493521Google Scholar
  51. Musser, G.G., Carleton, M.D. 1993Family MuridaeWilson, D.E.Reeder, D.M. eds. Mammal Species of the World: a Taxonomic and Geographic ReferenceSmithsonian Institution PressWashington501576Google Scholar
  52. Nadler, C.R., Hoffman, R.S., Honacki, J.H., Pozin, D. 1977Chromosomal evolution in chipmunks, with special emphasis on A and B karyotypes of the subgenus Neotamias Amer. Midl. Nat.98343353CrossRefGoogle Scholar
  53. Nanda, I., Neitzel, H., Sperling, K., Studer, R., Epplen, J.T. 1988Simple GACTA repeats characterize the X-chromosomal heterochromatin of Microtus-Agrestis, European field vole (Rodentia, Cricetidae)Chromosoma96213219PubMedCrossRefGoogle Scholar
  54. Nesterova, T.B., Slobodyanyuk, S.Y., Elisaphenko, E.A., Shevchenko, A.I., Johnston, C., Pavlova, M.E., Rogozin, I.B., Kolesnikov, N.N., Brockdorff, N., Zakian, S.M. 2001Characerization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequenceGenome Res.11833849PubMedCrossRefGoogle Scholar
  55. Odom, G.L., Robichaux, J.L., Deininger, P.L. 2004Predicting mammalian SINE subfamily activity from A-tail lengthMol. Biol. Evol.2121402148PubMedCrossRefGoogle Scholar
  56. Ojala, D., Montoya, J., Attardi, G. 1981tRNA punctuation model of RNA processing in human mitochondriaNature290470474PubMedCrossRefGoogle Scholar
  57. Olsen, S.J. 1990Fossil ancestry on the Yak, its cultural significance and domestication in TibetProc. Acad. Nat. Sci. Phil.14273100Google Scholar
  58. Patton, J.L., Sherwood, S.W. 1983Chromosome evolution and speciation in rodentsAnn. Rev. Ecol. Syst.14139158CrossRefGoogle Scholar
  59. Peláez-Campomanes, P., Martin, R.A. 2005The Pliocene and Pleistocene history of cotton rats in the Meade basin of southwestern KansasJ. Mammal.86475494CrossRefGoogle Scholar
  60. Pesole, G., Gissi, C., DeChirico, A., Saccone, C. 1999Nucleotide substitution rate of mammalian mitochondrial genomesJ. Mol. Evol.48427434PubMedCrossRefGoogle Scholar
  61. Ray, C.E. 1971Polar bear and mammoth on the Pribilof IslandsArctic24918Google Scholar
  62. Reig, O.A. 1989Karyotypic repatterning as one triggering factor in cases of explosive speciationFontdevila, A. eds. Evolutionary Biology of Transient Unstable PopulationsSpringer-VerlagNew York, NY246289Google Scholar
  63. Repenning, C.A. 1980Faunal exchanges between Siberia and North AmericaCan. J. Anthrop.13744Google Scholar
  64. Repenning, C.A. 1990Of mice and ice in the late Pliocene of North AmericaArctic43314323Google Scholar
  65. Richly, E., Leister, D. 2004NUMTs in Sequenced Eukaryotic GenomesMol. Biol. Evol.2110811084PubMedCrossRefGoogle Scholar
  66. Ritz, L.R., Glowatzki-Mullis, M.-L., MacHugh, D.E., Gaillard, C. 2000Phylogenetic analysis of the tribe Bovini using microsatellitesAnim. Genet.31178185PubMedCrossRefGoogle Scholar
  67. Rook, L., Mottura, A., Gentili, S. 2001Fossil Macaca remains from RDB quarry (Villafranca d’Asti, Italy): new data and overviewJ. Hum. Evol.40187202PubMedCrossRefGoogle Scholar
  68. Rozas, J., Sánchez-DelBarrio, J.C., Messeguer, X., Rozas, R. 2003DnaSP, DNA polymorphisms analyses by the coalescent and other methodsBioinformatics1924942497CrossRefGoogle Scholar
  69. Servent, A.G., Francis, C.M., Ricklefs, R.E. 2003Phylogeny and biogeography of the horseshoe batsCsorba, G.Ujhelyi, P.Thomas, N. eds. Horseshoe Bats of the World (Chiroptera: Rhinolophidae)Alana BooksShropshire, EnglandxiixxivGoogle Scholar
  70. Simpson, G.G. 1951The Story of the Horse Family in the Modern World and Through Sixty Million Years of HistoryOxford University PressNew YorkGoogle Scholar
  71. Spradling, T.A., Brant, S.V., Hafner, M.S., Dickerson, C.J. 2004DNA data support a rapid radiation of pocket gopher genera (Rodentia: Geomyidae)J. Mammal. Evol.11105125CrossRefGoogle Scholar
  72. Stojanovski, D., Johnston, A.J., Streimann, I., Hoogenraad, N.J., Ryan, M.T. 2003Import of nuclear-encoded proteins into mitochondriaExp. Physiol.8815764CrossRefGoogle Scholar
  73. Stone, A.C., Griffiths, R.C., Zegura, S.L., Hammer, M.F. 2002High levels of Y-chromosome nucleotide diversity in the genus PanProc. Natl. Acad. Sci. USA994348PubMedCrossRefGoogle Scholar
  74. Swofford, D.L., 2002. PAUP*, Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4.0. Sinauer, Sunderland, MAGoogle Scholar
  75. Thaler, L. 1986Origin and evolution of mice: an appraisal of fossil evidence and morphological traitsCurr. Top. Microbiol. Immunol.127311PubMedGoogle Scholar
  76. Wahlert, J.H., 1993. The fossil record, pp. 1–37 in Biology of the Heteromyidae edited by H.H. Genoways & J.H. Brown. The American Society of Mammalogists, special publication 10.Google Scholar
  77. Wang, W., Lan, H. 2000Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogenyMol. Biol. Evol.1713261333PubMedGoogle Scholar
  78. Wu, C.-I., Li, W.-H 1985Evidence for higher rates of nucleotide substitution in rodents than in manProc. Natl. Acad. Sci. USA8217411745PubMedCrossRefGoogle Scholar
  79. Wurster, D.H., Benirschke, K. 1970Indian muntjac, Muntiacus muntjak: a deer with a low diploid chromosome numberScience16813641366PubMedCrossRefGoogle Scholar
  80. Yu, N., Jensen-Seaman, M.I., Chemnick, L., Kidd, J.R., Deinard, A.S., Ryder, O., Kidd, K.K., Li, W.H. 2003Low nucleotide diversity in chimpanzees and bonobosGenetics16415111518PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteUSA

Personalised recommendations