, Volume 127, Issue 1–3, pp 329–340 | Cite as

Effects of coancestry on accuracy of individual assignments to population of origin: examples using Great Lakes lake trout (Salvelinus namaycush)

  • Bruno Guinand
  • Kim T. Scribner
  • Kevin S. Page
  • Kristi Filcek
  • Laura Main
  • Mary K. Burnham-Curtis


Methods for assigning individuals to population of origin are widely used in ecological genetics, resources management, and forensics. Characteristics of genetic data obtained from putative source populations that enhance accuracy of assignment are well established. How non-independence within and among unknown individuals to be classified [i.e., gene correlations within individual (inbreeding) and gene correlations among individuals within group (coancestry)] affect assignment accuracy is poorly understood. We used empirical data for six microsatellite loci and offspring from full-sib crosses of hatchery strains of lake trout (Salvelinus namaycush; Salmonidae) representing known levels of coancestry (mean θ = 0.006 and 0.06) within families to investigate how gene correlations can affect assignment. Additional simulations were conducted to further investigating the influence of allelic diversity (2, 6 or 10 alleles per locus) and inbreeding (F = 0.00, 0.05, and 0.15) on assignment accuracy for cases of low and high inter-population variance in allele frequency (mean F st = 0.01 and 0.1, respectively). Inbreeding had no effect on accuracy of assignments. In contrast, variance in assignment accuracy across replicated simulations, and for each empirical case study increased with increasing coancestry, reflecting non-independence of probabilities of correct assignment among members of kin groups. Empirical estimates of assignment error rates should be interpreted with caution if appreciable levels of coancestry are suspected. Additional emphasis should be placed on sampling designs (spatially and temporally) that define or minimize the potential for sampling related individuals.


assignment test coancestry gene correlations inbreeding lake trout 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angers, B., Bernatchez, L. 1996Usefulness of heterologous microsatellites obtained from brood charr, Salvelinus fontinalis Mitchill, in other Salvelinus speciesMol. Ecol.5317319PubMedCrossRefGoogle Scholar
  2. Arnold, K.E. 2000Kin recognition in rainbow fish (Melanotaenia eachamensis): sex, sibs and shoalingsBehav. Ecol. Sociobiol.48385391CrossRefGoogle Scholar
  3. Bekkevold, D., Hansen, M.M., Loeschke, V. 2002Male reproductive competition in spawning aggregations of cod (Gadus morhua, L.)Mol. Ecol.1191102PubMedCrossRefGoogle Scholar
  4. Belkhir, K., P. Borsa, L. Chikhi, N. Raufaste & F. Bonhomme, 2001. Genetix 4.02, logiciel sous Windows™ pour la génétique des populations. UMR CNRS 5171 Génome, Populations et Interactions, Université des Sciences et Techniques du Languedoc, Montpellier, FranceGoogle Scholar
  5. Bernatchez, L., Duchesne, P. 2000Individual-based genotype analysis in studies of parentage and population assignment: how many loci, how many alleles?Can. J. Fish. Aquat. Sci.57112CrossRefGoogle Scholar
  6. Berry, O., Tocher, M.D., Sarre, S.D. 2004Can assignment tests measure dispersal?Mol. Ecol.13551561PubMedCrossRefGoogle Scholar
  7. Castric, V., Bernatchez, L. 2004Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distanceMol. Ecol.1312991312PubMedCrossRefGoogle Scholar
  8. Castric, V., Bernatchez, L., Belkhir, K., Bonhomme, F. 2002Heterozygote deficiences in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypothesesHeredity892635Google Scholar
  9. Chesser, R.K. 1991aGene diversity and female philopatryGenetics127437447Google Scholar
  10. Chesser, R.K. 1991bInfluence of gene flow and breeding tactics on gene diversity within populationsGenetics129573583Google Scholar
  11. Cockerham, C.C. 1969Variance of gene frequenciesEvolution237284CrossRefGoogle Scholar
  12. Cockerham, C.C. 1973Analysis of gene frequenciesGenetics74679700PubMedGoogle Scholar
  13. Cornuet, J.-M., Piry, S., Luikart, G., Estoup, A., Solignac, M. 1999New methods employing multilocus genotypes to select or exclude populations as origins of individualsGenetics15319892000PubMedGoogle Scholar
  14. Efron, B. 1983Estimating the error rate of a prediction rule: improvement of cross-validationJ. Am. Stat. Assoc.78316330CrossRefGoogle Scholar
  15. Falush, D., Stephens, M., Pritchard, J.K. 2003Inference of population structure using multilocus genotype data: linked loci and correlated allele frequenciesGenetics16415671587PubMedGoogle Scholar
  16. Fontaine, P.-M., Dodson, J.J. 1999An analysis of the distribution of juvenile Atlantic salmon (Salmo salar) in nature as a function of relatedness using microsatelliteMol. Ecol.8189198CrossRefGoogle Scholar
  17. Fraser, D.J., Duchesne, P., Bernatchez, L. 2005Migratory charr schools exhibit population and kin associations beyond juvenile stagesMol. Ecol.1431333146PubMedCrossRefGoogle Scholar
  18. Gerlach, G., Schardt, U., Eckmann, R., Meyer, A. 2001Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.)Heredity86213221PubMedCrossRefGoogle Scholar
  19. Guo, S.W., Thompson, E.A. 1992Performing the exact test of Hardy–Weinberg proportion for multiple allelesBiometrics48361372PubMedCrossRefGoogle Scholar
  20. Guinand, B., Scribner, K.T., Topchy, A., Page, K.S., Punch, W., Burnham-Curtis, M.K. 2004Sampling issues affecting accuracy of likelihood-based classification using genetical dataEnviron. Biol. Fish.69245249CrossRefGoogle Scholar
  21. Hansen, M.M., Jensen, L.F. 2005Sibship within samples of brown trout (Salmo trutta) and implications for supportive breedingConserv. Genet.6297305CrossRefGoogle Scholar
  22. Hansen, M.M., Nielsen, E.E., Mensberg, K.L.D. 1997The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta LMol. Ecol.6469474CrossRefGoogle Scholar
  23. Hansen, M.M., Kenchington, E., Nielsen, E.E. 2001aAssigning individual fish to populations using microsatellite DNA markersFish Fish.293112Google Scholar
  24. Hansen, M.M., Ruzzante, D.E., Nielsen, E.E., Mensberg, K.L.D. 2001bBrown trout (Salmo trutta) stocking impact assessment using microsatellite DNA markersEcol. Appl.11148160Google Scholar
  25. Hedgecock, D. 1994Does variance in reproductive success limit effective population sizes of marine organisms?Beaumont, A.R. eds. Genetics and Evolution of Marine OrganismsChapman & HallLondon122134Google Scholar
  26. King, T.L., Kalinowski, S.T., Schill, W.B., Spidle, A.P., Lubinski, B. 2001Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variationMol. Ecol.10807821PubMedCrossRefGoogle Scholar
  27. Kolm, N., Hoffman, E.A., Olsson, J., Berglund, A., Jones, A.G. 2005Group stability and homing behavior but no kin group structures in a coral reef fishBehav. Ecol.16521527CrossRefGoogle Scholar
  28. Koskinen, M.T., Piironen, J., Primmer, C.R. 2001Interpopulation genetic divergence in European grayling (Thymallus thymallus, Salmonidae) at a microgeographic scale: implications for conservationConserv. Genet.2133143CrossRefGoogle Scholar
  29. Krause, J., Butlin, R.K., Peukhuri, N., Pritchard, V.L. 2001The social organization of fish shoals: a test of the predictive power of laboratory experiments for the fieldBiol. Rev. Camb. Phil. Soc.75477501CrossRefGoogle Scholar
  30. Luikart, G., England, P.R. 1999Statistical analysis of microsatellite DNA dataTrends Ecol. Evol.14253256PubMedCrossRefGoogle Scholar
  31. Manel, S., Gaggiotti, O.E., Waples, R.S. 2005Assignment methods: matching biological questions with appropriate techniquesTrends Ecol. Evol.20136142PubMedCrossRefGoogle Scholar
  32. Martinez, J.L., Dumas, J., Beall, E., Garcia-Vazquez, E. 2001Assessing introgression of foreign strains in wild Atlantic salmon populations: variation in microsatellites assessed in historic scale collectionsFreshwat. Biol.46835844CrossRefGoogle Scholar
  33. Nielsen, E.E., Hansen, M.M., Schmidt, C., Meldrup, D., Grønkjaer, P. 2001Population of origin of Atlantic codNature413272PubMedCrossRefGoogle Scholar
  34. Nielsen, E.E., Hansen, M.M., Ruzzante, D.E., Meldrup, D., Grønkjaer, P. 2003Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea revealed by individual admixture analysisMol. Ecol.1214971508PubMedCrossRefGoogle Scholar
  35. Olsen, J.B., Bentzen, P., Seeb, J.E. 1998Characterization of seven microsatellite loci derived from pink salmonMol. Ecol.710871089PubMedGoogle Scholar
  36. O’Reilly, P.T., Hamilton, L.C., McConnel, S.K., Wright, J.W. 1996Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatelliteCan. J. Fish. Aquat. Sci.5322922298CrossRefGoogle Scholar
  37. Paetkau, D., Calvert, W., Stirling, I., Strobeck, C. 1995Microsatellite analysis of population structure in Canadian polar bearsMol. Ecol.4347354PubMedGoogle Scholar
  38. Paetkau, D., Slade, R., Burden, M., Estoup, A. 2004Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and powerMol. Ecol.135565PubMedCrossRefGoogle Scholar
  39. Page, K.S., 2001. Genetic diversity and interrelationships of wild and hatchery lake trout in the upper Great Lakes: inferences for broodstock management and development of restoration strategies. M.S. Thesis, 121 pp. Department of Fisheries and Wildlife, Michigan State University, East LansingGoogle Scholar
  40. Page, K.S., Scribner, K.T., Bennett, K.R., Garzel, L.M. 2003Genetic assessment of strain-specific sources of lake trout recruitment in the Great LakesTrans. Am. Fish. Soc.132877894CrossRefGoogle Scholar
  41. Planes, S., Lenfant, P. 2002Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive successMol. Ecol.1115151524PubMedCrossRefGoogle Scholar
  42. Planes, S., Lecaillon, G., Lenfant, P., Meekan, M. 2002Genetic and demographic variation in new recruits of Naso unicornis J. Fish Biol.6110331049CrossRefGoogle Scholar
  43. Pouyaud, L., Desmarais, E., Chenuil, A., Agnèse, J.-F., Bonhomme, F. 1999Kin cohesiveness and possible inbreeding in the mouthbrooding tilapia Sarotherodon melanotheron (Pisces Cichlidae)Mol. Ecol.8803812CrossRefGoogle Scholar
  44. Primmer, C.R., Koskinen, M.T., Piironen, J. 2000The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraudProc. R. Soc. Biol. Sci.B26716991704CrossRefGoogle Scholar
  45. Pritchard, J.K., Stephens, M., Donnelly, P. 2000Inference of population structure using multi-locus genotype data Genetics155945959PubMedGoogle Scholar
  46. Queller, D.C., Goodnight, K.F. 1989Estimating relatedness using genetic markersEvolution43258275CrossRefGoogle Scholar
  47. Raymond, M., Rousset, F. 1995Genepop (Version 1.2): population genetics software for exact tests and ecumenicismJ. Hered.86248249Google Scholar
  48. Rice, W.R. 1989Analysing tables of statistical testsEvolution43223225CrossRefGoogle Scholar
  49. Roques, S., Duchesne, P., Bernatchez, L. 1999Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case studyMol. Ecol.817031717PubMedCrossRefGoogle Scholar
  50. Ross, K.G. 2001Molecular ecology of social behaviour: analyses of breeding systems and genetic structureMol. Ecol.10265284PubMedCrossRefGoogle Scholar
  51. Russell, S.T., Kelley, J.L., Graves, J.A., Magurran, A.E. 2004Kin structure and shoal composition dynamics in the guppy (Poecilia reticulata)Oïkos106520526Google Scholar
  52. Ruzzante, D.E., Hansen, M.M., Meldrup, D. 2001Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structureMol. Ecol.1021072128PubMedCrossRefGoogle Scholar
  53. Ryman, N., Allendorf, F.W., Ståhl, G. 1979Reproductive isolation with little genetic divergence in sympatric populations of brown trout (Salmo trutta)Genetics92247262PubMedGoogle Scholar
  54. Storz, J.F. 1999Genetic consequences of mammalian social structureJ. Mammal.80553569Google Scholar
  55. Sugg, D.W., Chesser, R.K., Dobson, F.S., Hoogland, J.L. 1996Population genetics meets behavioral ecologyTrends Ecol. Evol.11338342CrossRefGoogle Scholar
  56. Taylor, E.B., Kuiper, A., Troffe, P.M., Hoysak, D.J., Pollard, S. 2000Variation in developmental biology and microsatellite DNA in reproductive ecotypes of kokanee, Oncorhynchus nerka: implications for declining populations in a large British Columbia lakeConserv. Genet.1213249CrossRefGoogle Scholar
  57. Taylor, E.B., Redenbach, Z., Costello, A.B., Pollard, S.J., Pacas, C.J. 2001Nested analysis of genetic variation in northwestern North American char, Dolly Varden (Salvelinus malma) and bull trout (S. confluentus)Can. J. Fish. Aquat. Sci.58406420CrossRefGoogle Scholar
  58. Waser, P.M., Strobeck, C. 1998Genetic signatures of interpopulation dispersalTrends Ecol. Evol.134344CrossRefGoogle Scholar
  59. Weir, B.S. 1979Inferences about linkage disequilibriumBiometrics25235254CrossRefGoogle Scholar
  60. Weir, B.S., Cockerham, C.C. 1984Estimating F-statistics for the analysis of population structureEvolution3813581370CrossRefGoogle Scholar
  61. Wright, S. 1965The interpretation of population structure by F-statistics with special regards to system of matingEvolution19395420CrossRefGoogle Scholar
  62. Wright, S. 1969Evolution and the Genetics of Populations. Vol. 2: the Theory of Gene Frequencies Chicago University PressChicagoGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Bruno Guinand
    • 1
    • 2
  • Kim T. Scribner
    • 1
  • Kevin S. Page
    • 1
    • 4
  • Kristi Filcek
    • 1
  • Laura Main
    • 1
  • Mary K. Burnham-Curtis
    • 3
  1. 1.Department of Fisheries and WildlifeMichigan State UniversityEast LansingUSA
  2. 2.UMR CNRS 5171 Génome, Populations, Interactions, AdaptationSèteFrance
  3. 3.National Forensics LaboratoryU.S. Fish and Wildlife ServiceAshlandUSA
  4. 4.Minnesota Department of Natural ResourcesBrainerdUSA

Personalised recommendations