Advertisement

Genetica

, Volume 124, Issue 2–3, pp 247–255 | Cite as

Functional divergence of the circadian clock proteins in prokaryotes

  • Volodymyr Dvornyk
  • Bjarne Knudsen
Article

Abstract

Cyanobacteria are only prokaryotes known so far to have a circadian system. It may be based either on two (kaiB and kaiC) or three (kaiA, kaiB and kaiC) circadian genes. The homologs of two circadian proteins, KaiB and KaiC, form four major subfamilies (K1–K4) and also occur in some other prokaryotes. Using the likelihood-ratio tests, we studied a rate shift at the functional divergence of the proteins from the different subfamilies. It appears that only two of the subfamilies (K1 and K2) perform circadian functions. We identified in total 92 sites that have significantly different rates of evolution between the clades K1/K2 and K3/K4; 67 sites (15 in KaiB and 52 in KaiC) been evolving significantly slower in K1/K2 than the overall average for the entire sequence. Many critical sites are located in the identified functionally important motifs and regions, e.g. one of the Walker’s motif As, DXXG motif, and two KaiA-binding domains of KaiC. There are also 36 sites (~5%) with rate shift between K1 and K2. The rate shift at these sites may be related to the interaction with KaiA. Rate shift analyses have identified residues whose manipulation in the Kai proteins may lead to better understanding of their functions in the two different types of the cyanobacterial circadian system.

Keywords

circadian genes cyanobacteria functional divergence rate shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman,  1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res.2533893402PubMedGoogle Scholar
  2. Ashier, M., Kutsuna, S., Aoki, S., Iwasaki, H., Andersson, C.R., Tanabe, A., Golden, S.S., Johnson, C.H., Kondo, T. 1998Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteriaScience28115191523Google Scholar
  3. Bourne, H.R., Sanders, D.A., McCormick, F. 1991The GTPase superfamily: conserved structure and molecular mechanismNature349117127PubMedGoogle Scholar
  4. Ditty, J.L., Williams, S.B., Golden, S.S. 2003A cyanobacterial circadian timing mechanismAnnu. Rev. Genet.37513543PubMedGoogle Scholar
  5. Dvornyk, V. 2005Molecular evolution of ldpA, a gene mediating circadian input signal in cyanobacteriaJ. Mol. Evol.60105112PubMedGoogle Scholar
  6. Dvornyk, V., Vinogradova, O.N., Nevo, E. 2003Origin and evolution of circadian clock genes in prokaryotesProc. Natl. Acad. Sci. USA10024952500PubMedGoogle Scholar
  7. Dvornyk, V., Deng, H.W., Nevo, E. 2004Structure and molecular phylogeny of sasA genes in cyanobacteria: insights into evolution of the prokaryotic circadian systemMol. Biol. Evol.2114681476PubMedGoogle Scholar
  8. Gu, X. 1999Statistical methods for testing functional divergence after gene duplicationMol. Biol. Evol.1616641674PubMedGoogle Scholar
  9. Gu, X. 2001Maximum-likelihood approach for gene family evolution under functional divergenceMol. Biol. Evol.18453464PubMedGoogle Scholar
  10. Iwasaki, H., Taniguchi, Y., Ishiura, M., Kondo, T. 1999Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteriaEMBO J.1811371145PubMedGoogle Scholar
  11. Iwasaki, H., Williams, S.B., Kitayama, Y., Ishiura, M., Golden, S.S., Kondo, T. 2000A kaiC-interacting sensory histidine kinase, SasA, necessary to sustain robust circadian oscillation in cyanobacteriaCell101223233PubMedGoogle Scholar
  12. Kageyama, H., Kondo Iwasaki, T. H. 2003Circadian formation of clock protein complexes by KaiA, KaiB, KaiC, and SasA in cyanobacteriaJ. Biol. Chem.27823882395PubMedGoogle Scholar
  13. Katayama, M., Kondo, T., Xiong, J., Golden, S.S. 2003ldpA encodes an iron-sulfur protein involved in light-dependent modulation of the circadian period in the cyanobacterium Synechococcus elongatus PCC 7942J. Bacteriol.18514151422PubMedGoogle Scholar
  14. Kishino, H., Hasegawa, M. 1989Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in HominoideaJ. Mol. Evol.29170179PubMedGoogle Scholar
  15. Kitayama, Y., Iwasaki, H., Nishiwaki, T., Kondo, T. 2003KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock systemEMBO J.2221272134PubMedGoogle Scholar
  16. Klewer, D.A., Williams, S.B., Golden, S.S., LiWang, A.C. 2002Sequence-specific resonance assignments of the N-terminal, 105-residue KaiC-interacting domain of SasA, a protein necessary for a robust circadian rhythm in Synechococcus elongatusJ. Biomol. NMR247778PubMedGoogle Scholar
  17. Knudsen, B., Miyamoto, M.M. 2001A likelihood ratio test for evolutionary rate shifts and functional divergence among proteinsProc. Natl. Acad. Sci. USA981451214517PubMedGoogle Scholar
  18. Knudsen, B., Miyamoto, M.M., Laipis, P.J., Silverman, D.N. 2003Using evolutionary rates to investigate protein functional divergence and conservation: a case study of the carbonic anhydrasesGenetics16412611269PubMedGoogle Scholar
  19. Kutsuna, S., Kondo, T., Aoki, S., Ishiura, M. 1998A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942J. Bacteriol.18021672174PubMedGoogle Scholar
  20. Lorne, J., Scheffer, J., Lee, A., Painter, M., Miao, V.P. 2000Genes controlling circadian rhythm are widely distributed in cyanobacteriaFEMS Microbiol. Lett.189129133PubMedGoogle Scholar
  21. Min, H., Guo, H., Xiong, J. 2005Rhythmic gene expression in a purple photosynthetic bacterium, Rhodobacter sphaeroidesFEBS Lett.579808812PubMedGoogle Scholar
  22. Mori, T., Saveliev, S.V., Xu, Y., Stafford, W.F., Cox, M.M., Inman, R.B., Johnson, C.H. 2002Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNAProc. Natl. Acad. Sci. USA991720317208PubMedGoogle Scholar
  23. Nakahira, Y., Katayama, M., Miyashita, H., Kutsuna, S., Iwasaki, H., Oyama, T., Kondo, T. 2004Global gene repression by KaiC as a master process of prokaryotic circadian systemProc. Natl. Acad. Sci. USA101881885PubMedGoogle Scholar
  24. Nishiwaki, T., Iwasaki, H., Ishiura, M., Kondo, T. 2000Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteriaProc. Natl. Acad. Sci. USA97495499PubMedGoogle Scholar
  25. Saitou, N., Nei, M. 1987The neighbor-joining method: a new method for reconstructing phylogenetic treesMol. Biol. Evol.4406425PubMedGoogle Scholar
  26. Schmitz, O., Katayama, M., Williams, S.B., Kondo, T., Golden, S.S. 2000CikA, a bacteriophytochrome that resets the cyanobacterial circadian clockScience289765768PubMedGoogle Scholar
  27. Taniguchi, Y., Yamaguchi, A., Hijikata, A., Iwasaki, H., Kamagata, K., Ishiura, M., Go, M., Kondo, T. 2001Two KaiA-binding domains of cyanobacterial circadian clock protein KaiCFEBS Lett.4968690PubMedGoogle Scholar
  28. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res.2246734680PubMedGoogle Scholar
  29. Tsinoremas, N.F., Ishiura, M., Kondo, T., Tanaka, K., Takahashi, H., Johnson, C.H., Golden, S.S. 1996A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteriaEMBO J.1524882495PubMedGoogle Scholar
  30. Vakonakis, I., LiWang, A.C. 2004Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: implications for KaiC regulationProc. Natl. Acad. Sci. USA1011092510930PubMedGoogle Scholar
  31. Whelan, S., Goldman, N. 2001A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approachMol. Biol. Evol.18691699PubMedGoogle Scholar
  32. Williams, S.B., Vakonakis, I., Golden, S.S., LiWang, A.C. 2002Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanismProc. Natl. Acad. Sci. USA991535715362PubMedGoogle Scholar
  33. Xu, Y., Mori, T., Johnson, C.H. 2003Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiCEMBO J.2221172126PubMedGoogle Scholar
  34. Yang, Z. 1997PAML: a program package for phylogenetic analysis by maximum likelihoodCABIOS15555556Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Osteoporosis Research Center and Department of Biomedical SciencesCreighton UniversityOmahaUSA
  2. 2.Department of ZoologyUniversity of Florida GainesvilleUSA

Personalised recommendations