, Volume 127, Issue 1–3, pp 121–132 | Cite as

Ecological–genetic feedback in DNA repair in wild barley, Hordeum spontaneum

  • Achsa Lupu
  • Eviatar Nevo
  • Irina Zamorzaeva
  • Abraham Korol


Regulation of genetic variation in natural populations is a problem of primary importance to evolutionary biology. In the reported study, the repair efficiency of double strand DNA breaks was compared in six wild barley accessions from Israeli natural populations of H. spontaneum: three from mesic populations (one from Maalot and two from Mount Meron, Upper Galilee) and three from xeric populations (one from Wadi Quilt in the Judean Desert and two from Sede Boqer, in the northern Negev Desert). Pulsed field gel electrophoresis was used to score double-strand breaks of DNA (DSBs) caused by methyl methanesulphonate (MMS) treatment. All six accessions were also tested for heat tolerance: four of these, three xeric and one mesic (from Maalot population), were scored as heat tolerant whereas both accessions from Mount Meron population displayed heat sensitivity. MMS caused a significant increase in the level of DSBs relative to the control in all accessions. The major questions were whether and how the efficiency of DNA repair after mutagenic treatment is affected by the environmental conditions and accession’s adaptation to these conditions. Differences were found among the accessions in the repair pattern. Plants of two out of the four heat tolerant accessions did not manage to repair DNA neither at 25°C nor at 37°C. The remaining two heat tolerant accessions significantly repaired the breaks at 37°C, but not at 25°C. By contrast, plants of the two heat susceptible accessions significantly lowered the level of DSBs at 25°C but not at 37°C. Therefore, the accessions that proved capable to repair the induced damages in DNA at one of the two temperatures displayed a pattern that may imply the existence of a negative feedback mechanism in regulation of genetic variation. Such a dependence of DNA integrity on environment and genotype may serve an important factor for maintaining relatively high level of mutability without increasing the genetic load.


adaptation DNA repair double-strand breaks heat stress Hordeum spontaneum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, B.D., Dynlacht, J.R. 2001Heat-induced aggregation of XRCC5 (Ku80) in non-tolerant and thermo-tolerant cellsRadiat Res.156767774PubMedCrossRefGoogle Scholar
  2. Bray, E.A. 1997Plant responses to water deficitTrends Plant Sci.24854CrossRefGoogle Scholar
  3. Bregliano, J.C., Laurencon, A., Degroote, F. 1995Evidence for an inducible repair recombination system in the female germ line of Drosophila melanogaster. I. Induction by inhibitors of nucleotide synthesis and by gamma raysGenetics141571578PubMedGoogle Scholar
  4. Britt, A.B. 1995Repair of DNA damage induced by ultraviolet radiationPlant Physiol.108891896PubMedCrossRefGoogle Scholar
  5. Brown, A.H.D., Feldman, M.W., Nevo, E. 1980Multilocus structure of natural populations of Hordeum spontaneum Genetics96523536Google Scholar
  6. Calini, V., Urani, C., Camatini, M. 2003Overexpression of HSP70 is induced by ionizing radiation in C3H 10T1/2 cells and protects from DNA damage ToxicolIn Vitro17561566CrossRefGoogle Scholar
  7. Capy, P., Gasperi, G., Biemont, C., Bazin, C. 2002Stress and transposable elements: co-evolution or useful parasites?Heredity85101106CrossRefGoogle Scholar
  8. Chen, D., Toone, W.M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, M., Bahler, J. 2003Global transcriptional responses of fission yeast to environmental stressMol. Biol. Cell14214229PubMedCrossRefGoogle Scholar
  9. Close, T.J., Fenton, R.D., Moonan, F. 1993A view of plant dehydrins using antibodies specific to the carboxy terminal peptidePlant. Mol. Biol.23279286PubMedCrossRefGoogle Scholar
  10. Duwat, P., Sourice, S., Ehrlich, S.D., Gruss, A. 1995RecA gene involvement in oxidative and thermal stress in Lactococcus lactis Dev. Biol. Stand.85455467PubMedGoogle Scholar
  11. El-Awady, R.A., Dikomey, E., Dahm-Daphi, J. 2001Heat effects on DNA repair after ionizing radiation: hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangementsNucleic Acids Res.2919601966PubMedCrossRefGoogle Scholar
  12. Fraser, J.L., Neill, E., Davey, S. 2003Fission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivoDNA Repair (Amst).212531267CrossRefGoogle Scholar
  13. Friedberg, E.C., Walker, G.C., Siede, W. 1995DNA Repair and MutagenesisAmerican Society for MicrobiologyWashington, D.CGoogle Scholar
  14. Goodman, M.F., Tippin, B. 2000Sloppier copier DNA polymerases involved in genome repairCurr. Opin. Genet. Dev.10162168PubMedCrossRefGoogle Scholar
  15. Grandbastien, M.A. 1998Activation of plant retrotransposons under stress conditionsTrends Plant Sci.3181187CrossRefGoogle Scholar
  16. Hadany, L., Beker, T. 2003On the evolutionary advantage of fitness-associated recombinationGenetics16521672179PubMedGoogle Scholar
  17. Hoffman, A.A., Parsons, P.A. 1991Evolutionary Genetics and Environmental StressOxford University PressOxfordGoogle Scholar
  18. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E., Schulman, A.H. 2000Genome Evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence ProcNatl. Acad. Sci. USA9766036607CrossRefGoogle Scholar
  19. Kaszenman, D.J., Candreva, E.C., Nunes, D. 2000Cellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae Mutat Res.4592941Google Scholar
  20. Kidwell, M.G., Lisch, D. 1997Transposable elements as sources of variation in animals and plantsProc. Natl. Acad. Sci. USA9477047711PubMedCrossRefGoogle Scholar
  21. Kishony, R. & S. Leibler, 2003. Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2: 14–1–10).Google Scholar
  22. Koppen, G., Verschaeve, L. 1996The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cellsMutat. Res.360193200PubMedGoogle Scholar
  23. Korol, A.B., Preygel, I.A., Preygel, S.I. 1994Recombination Variability and EvolutionChapman and HallLondonGoogle Scholar
  24. Korol, A.B., 1999. Selection for adaptive traits as a factor of recombination evolution: evidence from natural and experimental populations (a review), pp. 31–53 in Evolutionary Theory and Processes: Modern Perspectives, edited by S.P. Vasser. Kluwer Academic PublishersGoogle Scholar
  25. Lavie, B., Stow, V., Krugman., T., Beiles, A., Nevo, E. 1993Fitness in wild barley from two opposing slopes of a Mediterranean microsite at Mount Carmel, IsraelBarley Genetics Newslett.231214Google Scholar
  26. Lopez, A., Xamena, N., Marcos, R., Velazquez, A. 2005Germline genomic instability in PCNA mutants of Drosophila: DNA fingerprinting and microsatellite analysisMutat. Res.570253265PubMedGoogle Scholar
  27. Lupu, A., Pechkovskaya, A., Rashkovetsky, E., Nevo, E., Korol,  A. 2004DNA repair efficiency and thermotolerance in Drosophila melanogaster from ‘Evolution Canyon’Mutagenesis19383390PubMedCrossRefGoogle Scholar
  28. Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Nguyen, H.T., Marmiroli, N. 2002Molecular genetics of heat tolerance and heat shock proteins in cerealsPlant Mol. Biol.48667681PubMedCrossRefGoogle Scholar
  29. Mendez, F., Kozin, E., Bases, R. 2003Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase betaCell Stress Chaperones8153161PubMedCrossRefGoogle Scholar
  30. Metzgar, D., Wills, C. 2000Evidence for adaptive evolution of mutation ratesCell101581584PubMedCrossRefGoogle Scholar
  31. Nevo, E., Zohary, D., Brown, A.H.D., Haber, M. 1979Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in IsraelEvolution33815833CrossRefGoogle Scholar
  32. Nevo, E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent, pp. 19–43, in Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, edited by R.P. Shewry. C.A.B. InternationalGoogle Scholar
  33. Nevo, E., Apelbaum-El-Kaher, I., Garty, J., Beiles, A. 1997Natural selection causes microscale allozyme diversity in wild barley and lichen at Evolution Canyon, Mt. Carmel. IsraelHeredity78373382CrossRefGoogle Scholar
  34. Nevo, E., Baum, B., Beiles, A., Johnson, D.A. 1998Ecological correlates of RAPD DNA diversity of wild barley Hordeum spontaneum, in the Fertile CrescentGenet. Res. Crop. Evol.45151159CrossRefGoogle Scholar
  35. Parsons, P.A. 1987Evolutionary rates under environmental stressEvol. Biol.2131147Google Scholar
  36. Pastink, A., Eeken, J.C.J., Lohman, P.H.M. 2001Genetic integrity and the repair of double-strand DNA breaksMutat. Res.480–4813750PubMedGoogle Scholar
  37. Quaite, F.E., Sutherland, J.C., Sutherland, B.M. 1994Isolation of high molecular weight plant DNA for DNA damage quantitation: Relative effects of solar 297 nm UVB and 365 nm radiationPlant Mol. Biol.24475483PubMedCrossRefGoogle Scholar
  38. Raaphorst, G.P., Ng, C.E., Yang, D.P. 1999Thermal radiosensitization and repair inhibition in human melanoma cells: A comparison of survival and DNA double-strand breaksInt. J. Hyperthermia.151727PubMedCrossRefGoogle Scholar
  39. Reagan, M.S., Pittenger, C., Siede, W., Friedberg, E.S. 1995Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene a structural homologue of the RAD2 nucleotide excision repair geneJ. Bacteriol.177364371PubMedGoogle Scholar
  40. Rocha, E.P., Matic, I., Taddei, F. 2002Over-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions?Nucleic Acids Res.3018861894PubMedCrossRefGoogle Scholar
  41. Rosenberg, S.M. 2001Evolving responsively: Adaptive mutationNat. Rev. Genetics2504515CrossRefGoogle Scholar
  42. Rutherford, S. 2003Between accession and phenotype: Protein chaperones and evolvabilityNat. Rev. Genetics4253274CrossRefGoogle Scholar
  43. Sancar, A., Tang, M.S. 1993Nucleotide excision repairPhotochem. Photobiol.57905921PubMedGoogle Scholar
  44. Schmidt-Rose, T., Pollet, D., Will, K., Beremann, J., Wittern,  K.P. 1999Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cellsJ. Photochem. Photobiol. B.53144152PubMedCrossRefGoogle Scholar
  45. Schroder, H.C., Hassanein, H.M.A., Lauenroth, S., Koziol, C., Mohamed, T.A.A.A., Lacorn, M., Steinhart, H., Batel, R., Muller, W.E.G. 1999Induction of DNA strand breaks and expression of HSP70 and GRP78 homolog by cadmium in the Marine sponge Suberites domuncula Arch. Environ. Contam. Toxicol.364755PubMedCrossRefGoogle Scholar
  46. Schmuckli-Maurer, J., Rolfsmeier, M., Nguyen, H., Heyer,  W.D. 2003Genome instability in rad54 mutants of Saccharomyces cerevisiae Nucleic Acids Res.3110131023PubMedCrossRefGoogle Scholar
  47. Sommers, C.H., Miller, E.J., Dujon, B., Prakash, S., Prakash,  L. 1995Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′-to 3′ exonuclease required for lagging strand DNA synthesis in reconstituted systemsJ. Biol. Chem.27041934196PubMedCrossRefGoogle Scholar
  48. Tikhomirova, M.M. 1980Relationship between the body’s adaptation to heat and the modifying effect of extreme temperature on the effect of radiation. II. An analysis of the potential damages in a line adapted to heatGenetika (USSR)16290298Google Scholar
  49. Vonarx, E.J., Mitchell, H.L., Karthikeyan, R., Chatterjee, I., Kunz, B.A. 1998DNA repair in higher plantsMutat. Res.400187200PubMedGoogle Scholar
  50. Wills, C. 1984. The possibility of stress-triggered evolution, Vol. 53, pp. 299–312 in Evolutionary Dynamics of Genetic Diversity, edited by G.S. Mani. Lect. Notes BiomathGoogle Scholar
  51. Zou, W., Crowley, D.J., Houten, B. 1998Involvement of molecular chaperonins in nucleotide excision repair, DnaK leads to increased thermal stability of UvrA catalytic UvrB loading enhanced repair and increased UV resistanceJ. Biol. Chem.2731288712892PubMedCrossRefGoogle Scholar
  52. Zhuchenko, A.A., Korol, A.B. 1983Ecological aspects of the recombination problemTheor. Appl. Genet.64177185CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Achsa Lupu
    • 1
  • Eviatar Nevo
    • 1
  • Irina Zamorzaeva
    • 2
  • Abraham Korol
    • 1
  1. 1.Institute of EvolutionUniversity of HaifaMount CarmelIsrael
  2. 2.Institute of GeneticsAcademy of Sciences of MoldovaKishinevMoldova

Personalised recommendations