Skip to main content
Log in

Ecological–genetic feedback in DNA repair in wild barley, Hordeum spontaneum

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Regulation of genetic variation in natural populations is a problem of primary importance to evolutionary biology. In the reported study, the repair efficiency of double strand DNA breaks was compared in six wild barley accessions from Israeli natural populations of H. spontaneum: three from mesic populations (one from Maalot and two from Mount Meron, Upper Galilee) and three from xeric populations (one from Wadi Quilt in the Judean Desert and two from Sede Boqer, in the northern Negev Desert). Pulsed field gel electrophoresis was used to score double-strand breaks of DNA (DSBs) caused by methyl methanesulphonate (MMS) treatment. All six accessions were also tested for heat tolerance: four of these, three xeric and one mesic (from Maalot population), were scored as heat tolerant whereas both accessions from Mount Meron population displayed heat sensitivity. MMS caused a significant increase in the level of DSBs relative to the control in all accessions. The major questions were whether and how the efficiency of DNA repair after mutagenic treatment is affected by the environmental conditions and accession’s adaptation to these conditions. Differences were found among the accessions in the repair pattern. Plants of two out of the four heat tolerant accessions did not manage to repair DNA neither at 25°C nor at 37°C. The remaining two heat tolerant accessions significantly repaired the breaks at 37°C, but not at 25°C. By contrast, plants of the two heat susceptible accessions significantly lowered the level of DSBs at 25°C but not at 37°C. Therefore, the accessions that proved capable to repair the induced damages in DNA at one of the two temperatures displayed a pattern that may imply the existence of a negative feedback mechanism in regulation of genetic variation. Such a dependence of DNA integrity on environment and genotype may serve an important factor for maintaining relatively high level of mutability without increasing the genetic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.D. Beck J.R. Dynlacht (2001) ArticleTitleHeat-induced aggregation of XRCC5 (Ku80) in non-tolerant and thermo-tolerant cells Radiat Res. 156 767–774 Occurrence Handle11741501 Occurrence Handle1:CAS:528:DC%2BD38XpsFek Occurrence Handle10.1667/0033-7587(2001)156[0767:HIAOXK]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • E.A. Bray (1997) ArticleTitlePlant responses to water deficit Trends Plant Sci. 2 48–54 Occurrence Handle10.1016/S1360-1385(97)82562-9

    Article  Google Scholar 

  • J.C. Bregliano A. Laurencon F. Degroote (1995) ArticleTitleEvidence for an inducible repair recombination system in the female germ line of Drosophila melanogaster. I. Induction by inhibitors of nucleotide synthesis and by gamma rays Genetics 141 571–578 Occurrence Handle8647393 Occurrence Handle1:CAS:528:DyaK28Xht1Cgt7Y%3D

    PubMed  CAS  Google Scholar 

  • A.B. Britt (1995) ArticleTitleRepair of DNA damage induced by ultraviolet radiation Plant Physiol. 108 891–896 Occurrence Handle7630970 Occurrence Handle1:CAS:528:DyaK2MXmvFGmt74%3D Occurrence Handle10.1104/pp.108.3.891

    Article  PubMed  CAS  Google Scholar 

  • A.H.D. Brown M.W. Feldman E. Nevo (1980) ArticleTitleMultilocus structure of natural populations of Hordeum spontaneum Genetics 96 523–536

    Google Scholar 

  • V. Calini C. Urani M. Camatini (2003) ArticleTitleOverexpression of HSP70 is induced by ionizing radiation in C3H 10T1/2 cells and protects from DNA damage Toxicol In Vitro 17 561–566 Occurrence Handle1:CAS:528:DC%2BD3sXos12ls7s%3D Occurrence Handle10.1016/S0887-2333(03)00116-4

    Article  CAS  Google Scholar 

  • P. Capy G. Gasperi C. Biemont C. Bazin (2002) ArticleTitleStress and transposable elements: co-evolution or useful parasites? Heredity 85 101–106 Occurrence Handle10.1046/j.1365-2540.2000.00751.x

    Article  Google Scholar 

  • D. Chen W.M. Toone J. Mata R. Lyne G. Burns K. Kivinen A. Brazma M. Jones J. Bahler (2003) ArticleTitleGlobal transcriptional responses of fission yeast to environmental stress Mol. Biol. Cell 14 214–229 Occurrence Handle12529438 Occurrence Handle1:CAS:528:DC%2BD3sXnvVOjuw%3D%3D Occurrence Handle10.1091/mbc.E02-08-0499

    Article  PubMed  CAS  Google Scholar 

  • T.J. Close R.D. Fenton F. Moonan (1993) ArticleTitleA view of plant dehydrins using antibodies specific to the carboxy terminal peptide Plant. Mol. Biol. 23 279–286 Occurrence Handle7693020 Occurrence Handle1:CAS:528:DyaK2cXnsFSrsw%3D%3D Occurrence Handle10.1007/BF00029004

    Article  PubMed  CAS  Google Scholar 

  • P. Duwat S. Sourice S.D. Ehrlich A. Gruss (1995) ArticleTitleRecA gene involvement in oxidative and thermal stress in Lactococcus lactis Dev. Biol. Stand. 85 455–467 Occurrence Handle8586217 Occurrence Handle1:CAS:528:DyaK28XjtVCqsr4%3D

    PubMed  CAS  Google Scholar 

  • R.A. El-Awady E. Dikomey J. Dahm-Daphi (2001) ArticleTitleHeat effects on DNA repair after ionizing radiation: hyperthermia commonly increases the number of non-repaired double-strand breaks and structural rearrangements Nucleic Acids Res. 29 1960–1966 Occurrence Handle11328880 Occurrence Handle1:CAS:528:DC%2BD3MXjvVGisLc%3D Occurrence Handle10.1093/nar/29.9.1960

    Article  PubMed  CAS  Google Scholar 

  • J.L. Fraser E. Neill S. Davey (2003) ArticleTitleFission yeast Uve1 and Apn2 function in distinct oxidative damage repair pathways in vivo DNA Repair (Amst). 2 1253–1267 Occurrence Handle1:CAS:528:DC%2BD3sXos1Ogsr8%3D Occurrence Handle10.1016/j.dnarep.2003.08.005

    Article  CAS  Google Scholar 

  • E.C. Friedberg G.C. Walker W. Siede (1995) DNA Repair and Mutagenesis American Society for Microbiology Washington, D.C

    Google Scholar 

  • M.F. Goodman B. Tippin (2000) ArticleTitleSloppier copier DNA polymerases involved in genome repair Curr. Opin. Genet. Dev. 10 162–168 Occurrence Handle10753775 Occurrence Handle1:CAS:528:DC%2BD3cXisFWhsb4%3D Occurrence Handle10.1016/S0959-437X(00)00057-5

    Article  PubMed  CAS  Google Scholar 

  • M.A. Grandbastien (1998) ArticleTitleActivation of plant retrotransposons under stress conditions Trends Plant Sci. 3 181–187 Occurrence Handle10.1016/S1360-1385(98)01232-1

    Article  Google Scholar 

  • L. Hadany T. Beker (2003) ArticleTitleOn the evolutionary advantage of fitness-associated recombination Genetics 165 2167–2179 Occurrence Handle14704195

    PubMed  Google Scholar 

  • A.A. Hoffman P.A. Parsons (1991) Evolutionary Genetics and Environmental Stress Oxford University Press Oxford

    Google Scholar 

  • R. Kalendar J. Tanskanen S. Immonen E. Nevo A.H. Schulman (2000) ArticleTitleGenome Evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence Proc Natl. Acad. Sci. USA 97 6603–6607 Occurrence Handle1:CAS:528:DC%2BD3cXktFaju7Y%3D Occurrence Handle10.1073/pnas.110587497

    Article  CAS  Google Scholar 

  • D.J. Kaszenman E.C. Candreva D. Nunes (2000) ArticleTitleCellular and molecular effects of bleomycin are modulated by heat shock in Saccharomyces cerevisiae Mutat Res. 459 29–41

    Google Scholar 

  • M.G. Kidwell D. Lisch (1997) ArticleTitleTransposable elements as sources of variation in animals and plants Proc. Natl. Acad. Sci. USA 94 7704–7711 Occurrence Handle9223252 Occurrence Handle1:CAS:528:DyaK2sXksl2nsLw%3D Occurrence Handle10.1073/pnas.94.15.7704

    Article  PubMed  CAS  Google Scholar 

  • Kishony, R. & S. Leibler, 2003. Environmental stresses can alleviate the average deleterious effect of mutations. J. Biol. 2: 14–1–10).

    Google Scholar 

  • G. Koppen L. Verschaeve (1996) ArticleTitleThe alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cells Mutat. Res. 360 193–200 Occurrence Handle8692219 Occurrence Handle1:CAS:528:DyaK28XktVygsL8%3D

    PubMed  CAS  Google Scholar 

  • A.B. Korol I.A. Preygel S.I. Preygel (1994) Recombination Variability and Evolution Chapman and Hall London

    Google Scholar 

  • Korol, A.B., 1999. Selection for adaptive traits as a factor of recombination evolution: evidence from natural and experimental populations (a review), pp. 31–53 in Evolutionary Theory and Processes: Modern Perspectives, edited by S.P. Vasser. Kluwer Academic Publishers

  • B. Lavie V. Stow T. Krugman. A. Beiles E. Nevo (1993) ArticleTitleFitness in wild barley from two opposing slopes of a Mediterranean microsite at Mount Carmel, Israel Barley Genetics Newslett. 23 12–14

    Google Scholar 

  • A. Lopez N. Xamena R. Marcos A. Velazquez (2005) ArticleTitleGermline genomic instability in PCNA mutants of Drosophila: DNA fingerprinting and microsatellite analysis Mutat. Res. 570 253–265 Occurrence Handle15708584 Occurrence Handle1:CAS:528:DC%2BD2MXhtlSls7o%3D

    PubMed  CAS  Google Scholar 

  • A. Lupu A. Pechkovskaya E. Rashkovetsky E. Nevo A. Korol (2004) ArticleTitleDNA repair efficiency and thermotolerance in Drosophila melanogaster from ‘Evolution Canyon’ Mutagenesis 19 383–390 Occurrence Handle15388811 Occurrence Handle1:CAS:528:DC%2BD2cXnvVOmtLg%3D Occurrence Handle10.1093/mutage/geh045

    Article  PubMed  CAS  Google Scholar 

  • E. Maestri N. Klueva C. Perrotta M. Gulli H.T. Nguyen N. Marmiroli (2002) ArticleTitleMolecular genetics of heat tolerance and heat shock proteins in cereals Plant Mol. Biol. 48 667–681 Occurrence Handle11999842 Occurrence Handle1:CAS:528:DC%2BD38XjsFWrt78%3D Occurrence Handle10.1023/A:1014826730024

    Article  PubMed  CAS  Google Scholar 

  • F. Mendez E. Kozin R. Bases (2003) ArticleTitleHeat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta Cell Stress Chaperones 8 153–161 Occurrence Handle14627201 Occurrence Handle1:CAS:528:DC%2BD3sXntlWkt7k%3D Occurrence Handle10.1379/1466-1268(2003)008<0153:HSPSOT>2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • D. Metzgar C. Wills (2000) ArticleTitleEvidence for adaptive evolution of mutation rates Cell 101 581–584 Occurrence Handle10892644 Occurrence Handle1:CAS:528:DC%2BD3cXkt1WrsbY%3D Occurrence Handle10.1016/S0092-8674(00)80869-7

    Article  PubMed  CAS  Google Scholar 

  • E. Nevo D. Zohary A.H.D. Brown M. Haber (1979) ArticleTitleGenetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel Evolution 33 815–833 Occurrence Handle1:CAS:528:DyaL3cXjt12i Occurrence Handle10.2307/2407648

    Article  CAS  Google Scholar 

  • Nevo, E. 1992. Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent, pp. 19–43, in Barley: Genetics, Biochemistry, Molecular Biology and Biotechnology, edited by R.P. Shewry. C.A.B. International

  • E. Nevo I. Apelbaum-El-Kaher J. Garty A. Beiles (1997) ArticleTitleNatural selection causes microscale allozyme diversity in wild barley and lichen at Evolution Canyon, Mt. Carmel. Israel Heredity 78 373–382 Occurrence Handle10.1038/sj.hdy.6881420

    Article  Google Scholar 

  • E. Nevo B. Baum A. Beiles D.A. Johnson (1998) ArticleTitleEcological correlates of RAPD DNA diversity of wild barley Hordeum spontaneum, in the Fertile Crescent Genet. Res. Crop. Evol. 45 151–159 Occurrence Handle10.1023/A:1008616923427

    Article  Google Scholar 

  • P.A. Parsons (1987) ArticleTitleEvolutionary rates under environmental stress Evol. Biol. 21 311–47

    Google Scholar 

  • A. Pastink J.C.J. Eeken P.H.M. Lohman (2001) ArticleTitleGenetic integrity and the repair of double-strand DNA breaks Mutat. Res. 480–481 37–50 Occurrence Handle11506797

    PubMed  Google Scholar 

  • F.E. Quaite J.C. Sutherland B.M. Sutherland (1994) ArticleTitleIsolation of high molecular weight plant DNA for DNA damage quantitation: Relative effects of solar 297 nm UVB and 365 nm radiation Plant Mol. Biol. 24 475–483 Occurrence Handle8123789 Occurrence Handle1:CAS:528:DyaK2cXis1Clu74%3D Occurrence Handle10.1007/BF00024115

    Article  PubMed  CAS  Google Scholar 

  • G.P. Raaphorst C.E. Ng D.P. Yang (1999) ArticleTitleThermal radiosensitization and repair inhibition in human melanoma cells: A comparison of survival and DNA double-strand breaks Int. J. Hyperthermia. 15 17–27 Occurrence Handle10193754 Occurrence Handle1:STN:280:DyaK1M3gvVSqtQ%3D%3D Occurrence Handle10.1080/026567399285828

    Article  PubMed  CAS  Google Scholar 

  • M.S. Reagan C. Pittenger W. Siede E.S. Friedberg (1995) ArticleTitleCharacterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene a structural homologue of the RAD2 nucleotide excision repair gene J. Bacteriol. 177 364–371 Occurrence Handle7814325 Occurrence Handle1:CAS:528:DyaK2MXjtFOqsL4%3D

    PubMed  CAS  Google Scholar 

  • E.P. Rocha I. Matic F. Taddei (2002) ArticleTitleOver-representation of repeats in stress response genes: a strategy to increase versatility under stressful conditions? Nucleic Acids Res. 30 1886–1894 Occurrence Handle11972324 Occurrence Handle1:CAS:528:DC%2BD38XktFGhtLs%3D Occurrence Handle10.1093/nar/30.9.1886

    Article  PubMed  CAS  Google Scholar 

  • S.M. Rosenberg (2001) ArticleTitleEvolving responsively: Adaptive mutation Nat. Rev. Genetics 2 504–515 Occurrence Handle1:CAS:528:DC%2BD3MXltVCksL8%3D Occurrence Handle10.1038/35080556

    Article  CAS  Google Scholar 

  • S. Rutherford (2003) ArticleTitleBetween accession and phenotype: Protein chaperones and evolvability Nat. Rev. Genetics 4 253–274 Occurrence Handle10.1038/nrm1086

    Article  Google Scholar 

  • A. Sancar M.S. Tang (1993) ArticleTitleNucleotide excision repair Photochem. Photobiol. 57 905–921 Occurrence Handle8393197 Occurrence Handle1:CAS:528:DyaK3sXkvFSis7k%3D

    PubMed  CAS  Google Scholar 

  • T. Schmidt-Rose D. Pollet K. Will J. Beremann K.P. Wittern (1999) ArticleTitleAnalysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells J. Photochem. Photobiol. B. 53 144–152 Occurrence Handle10672538 Occurrence Handle1:CAS:528:DC%2BD3cXhtlCisb8%3D Occurrence Handle10.1016/S1011-1344(99)00141-4

    Article  PubMed  CAS  Google Scholar 

  • H.C. Schroder H.M.A. Hassanein S. Lauenroth C. Koziol T.A.A.A. Mohamed M. Lacorn H. Steinhart R. Batel W.E.G. Muller (1999) ArticleTitleInduction of DNA strand breaks and expression of HSP70 and GRP78 homolog by cadmium in the Marine sponge Suberites domuncula Arch. Environ. Contam. Toxicol. 36 47–55 Occurrence Handle9828261 Occurrence Handle1:STN:280:DyaK1M%2FksleqsA%3D%3D Occurrence Handle10.1007/s002449900441

    Article  PubMed  CAS  Google Scholar 

  • J. Schmuckli-Maurer M. Rolfsmeier H. Nguyen W.D. Heyer (2003) ArticleTitleGenome instability in rad54 mutants of Saccharomyces cerevisiae Nucleic Acids Res. 31 1013–1023 Occurrence Handle12560498 Occurrence Handle1:CAS:528:DC%2BD3sXit1aqtL8%3D Occurrence Handle10.1093/nar/gkg190

    Article  PubMed  CAS  Google Scholar 

  • C.H. Sommers E.J. Miller B. Dujon S. Prakash L. Prakash (1995) ArticleTitleConditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′-to 3′ exonuclease required for lagging strand DNA synthesis in reconstituted systems J. Biol. Chem. 270 4193–4196 Occurrence Handle7876174 Occurrence Handle1:CAS:528:DyaK2MXktFSit7s%3D Occurrence Handle10.1074/jbc.270.9.4193

    Article  PubMed  CAS  Google Scholar 

  • M.M. Tikhomirova (1980) ArticleTitleRelationship between the body’s adaptation to heat and the modifying effect of extreme temperature on the effect of radiation. II. An analysis of the potential damages in a line adapted to heat Genetika (USSR) 16 290–298 Occurrence Handle1:STN:280:Bi%2BC3MznvVU%3D

    CAS  Google Scholar 

  • E.J. Vonarx H.L. Mitchell R. Karthikeyan I. Chatterjee B.A. Kunz (1998) ArticleTitleDNA repair in higher plants Mutat. Res. 400 187–200 Occurrence Handle9685637 Occurrence Handle1:CAS:528:DyaK1cXks1OnsrY%3D

    PubMed  CAS  Google Scholar 

  • Wills, C. 1984. The possibility of stress-triggered evolution, Vol. 53, pp. 299–312 in Evolutionary Dynamics of Genetic Diversity, edited by G.S. Mani. Lect. Notes Biomath

  • W. Zou D.J. Crowley B. Houten ParticleVan (1998) ArticleTitleInvolvement of molecular chaperonins in nucleotide excision repair, DnaK leads to increased thermal stability of UvrA catalytic UvrB loading enhanced repair and increased UV resistance J. Biol. Chem. 273 12887–12892 Occurrence Handle9582319 Occurrence Handle1:CAS:528:DyaK1cXjsVeru74%3D Occurrence Handle10.1074/jbc.273.21.12887

    Article  PubMed  CAS  Google Scholar 

  • A.A. Zhuchenko A.B. Korol (1983) ArticleTitleEcological aspects of the recombination problem Theor. Appl. Genet. 64 177–185 Occurrence Handle10.1007/BF00272731

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Korol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupu, A., Nevo, E., Zamorzaeva, I. et al. Ecological–genetic feedback in DNA repair in wild barley, Hordeum spontaneum . Genetica 127, 121–132 (2006). https://doi.org/10.1007/s10709-005-2611-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-005-2611-0

Keywords

Navigation