, Volume 126, Issue 3, pp 353–368 | Cite as

Diversity of Boll Weevil Populations in South America: A Phylogeographic Approach

  • María A. Scataglini
  • Analia A. Lanteri
  • Viviana A. Confalonieri


A phylogeographic approach was conducted to assess the geographic structure and genetic variation in populations of the boll weevil Anthonomus grandis, which is the most harmful insect pest of cotton in the Americas. COI and COII mitochondrial gene sequences were analyzed to test a former hypothesis on the origin of the boll weevil in Argentina, Brazil and Paraguay, using samples from Mexico and USA as putative source populations. The analysis of variability suggests that populations from South American cotton fields and nearby disturbed areas form a phylogroup with a central haplotype herein called A, which is the most common and widespread in USA and South America. The population from Texas has the A haplotype as the most frequent and gathers in the same group as the South American populations associated with cotton. The sample from Tecomán (México) shows high values of within-nucleotide divergence, shares no haplotype in common with the South American samples, and forms a phylogroup separated by several mutational steps. The sample from Iguazú National Park (Misiones Province, Argentina) has similar characteristics, with highly divergent haplotypes forming a phylogroup closer to the samples from cotton fields, than to the Mexican group. We propose that in South America there are: populations with characteristics of recent invaders, which would be remnants of “bottlenecks” that occurred after single or multiple colonization events, probably from the United States, and ancient populations associated with native forests, partially isolated by events of historical fragmentation.


Anthonomus cotton insect pest mitochondrial DNA population genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ab’Sáber, A.N. 1977Espaços ocupados pela expansão dos climas secos na America do Sul, por ocasião dos períodos glaciais QuaternáriosPaleoclimas, Univ. São Paulo, Inst. de Geografía3119Google Scholar
  2. Anderson, R.S. 1993Weevil and plants: phylogenetic versus ecological mediation of evolution of host plant associations in Curculioninae (Coleoptera: Curculionidae)Mem. Entomol. Soc. Can.165197232Google Scholar
  3. Axelrod, D.I., 1950. Studies in late Tertiary palobotany. Carnegie Inst. Wash., Publ. 590.Google Scholar
  4. Axelrod, D.I. 1958Evolution of the Madro-Tertiary floraBot. Rev.24433509Google Scholar
  5. Avise, J.C. 2000Phylogeography: the history and formation of speciesHarvard Univ. PressCambridge, MAGoogle Scholar
  6. Avise, J.C., Walker, D. 1998Pleistocene phylogeographic effects on avian populations and the speciation processProc. Roy. Soc. Lond. B265457463Google Scholar
  7. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E.,  et al. 1987Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematicsAnn. Rev. Ecol. Syst.18489522Google Scholar
  8. Becerra, J.K. 1997Insects on plants: macroevolutionary chemical trends in host useScience276253256CrossRefPubMedGoogle Scholar
  9. Becerra, J.K., Venable, L. 1999Macroevolution of insect-plant associations. The relevance of host biogeography to host associationProc. Nat. Acad. Sci. USA961262612631CrossRefPubMedGoogle Scholar
  10. Bensansson, D., Zhang, D., Hewitt, G.M. 2000Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomesMol. Biol. Evol.17406415Google Scholar
  11. Bernays, E.A., Chapman, R.F. 1994Host-plant selection by Phytophagous InsectsChapman & HallNew YorkGoogle Scholar
  12. Brubaker, C.L., Wendel, J.F. 1994Reevaluating the origin of domesticated cotton (Gossypium hirsutum: Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs)Am. J. Bot.8113091326Google Scholar
  13. Burke, H.R., 1968. Geographic variation and taxonomy of Anthonomus grandis Boheman. Dept. Entomol. Texas A. & M. Univ.Google Scholar
  14. Burke, H.R. 1976Bionomics of the anthonomine weevilsAnnu. Rev. Entomol.21283303CrossRefGoogle Scholar
  15. Burke, H.R., Cate, J.R. 1979A new species of Mexican Anthonomus related to the boll weevil (Coleoptera: Curculionidae)Ann. Entomol. Soc. Am.72189192Google Scholar
  16. Burke, H.R. & W.E. Clark, 1976. Cienfuegosia drumondii as a host of the boll weevil, Anthonomus grandis Boheman, in south Texas. Proceedings, Boll Weevil Suppression, Management and Elimination Technology, pp.13–15.Google Scholar
  17. Burke, H.R., Clark, W.E., Cate, J.R., Fryxell, P.A. 1986Origin and dispersal of the boll weevilBull. Entomol. Soc. Am.32228238Google Scholar
  18. Burke, H.R., Clark, W.E., Cross, W.H. 1984Larvae and pupae of the Anthonomus subgenus Anthonomorphus Dietz, A. grandis Boheman and A. hunteri Burke and Cate (Coleoptera: Curculionidae)Southwest. Entomol.98490Google Scholar
  19. Burke, H.R., Cross, W.H. 1966A new species of Anthonomus attacking cotton in Colombia, with a review of the taxonomy of Anthonomus vestitus (Coleoptera: Curculionidae)Ann. Entomol. Soc. Am.59924931Google Scholar
  20. Cabrera, A.L., Willink, A. 1980Biogeografía de América Latina2Serie de Biología. Sec. Gral. OEAWashington, D. CGoogle Scholar
  21. Clark, W.E. 1988Revision of the weevil genus Loncophorus Chevrolat (Coleoptera: Curculionidae, Anthonominae)Quaest. Entomol.24465520Google Scholar
  22. Clark, W.E. 1995A new species of Loncophorus from Mexico (Coleoptera: Curculionidae: Anthonomini) associated with Mortoniodendron (Malvales: Tiliaceae)An. Inst. Biol. UNAM, Serie Zool.66107112Google Scholar
  23. Clark, W.E., Burke, H.R. 1986Phylogeny of the species of the Anthonomus subgenus Anthonomorphus Dietz, with discussion of relationships with Anthonomus grandis Boheman (Coleoptera: Curculionidae)J. Kansas. Entomol. Soc.59508516Google Scholar
  24. Clary, D.O., Wolstenholme, D.R. 1985The mitochondrial DNA molecule of Drosophila yacuba: nucleotide sequence, gene organization and genetic codeJ. Mol. Evol.22252271CrossRefPubMedGoogle Scholar
  25. Confalonieri, V.A., Sequeira, A.S., Todaro, L., Vilardi, J.C. 1998Mitochondrial DNA phylogeography of the grasshopper Trimerotropis pallidipennis in relation to clinal distribution of chromosome polymorphismsHeredity81444452CrossRefGoogle Scholar
  26. Confalonieri, V.A., Scataglini, A.A., Remis, M.I. 2002Sequence differentiantion among inversion rearramgements are revealed by RAPD markers in the grasshopper Trimerotropis pallidipennis (Orthoptera)Ann. Entomol. Society of America95201207Google Scholar
  27. Croizat, L., Nelson, G., Rosen, D.E. 1974Centers of origin and related conceptsSyst. Zool.23265287Google Scholar
  28. Cross, W.H., Lukefahr, M.J., Fryxell, P.A., Burke, H.R. 1975Host plants of the boll weevilEnviron. Entomol.41926Google Scholar
  29. Donn, W.L., Farrand, W.R., Ewing, M. 1962Pleistocene ice volumes and sea-level loweringJour. Geol.63538578Google Scholar
  30. Emerson, B.C., Oromí, P., Hewitt, G.M. 2000Colonization and diversification of the species Brachyderes rugatus (Coleoptera) on the Canary Islands: evidence from mitochondrial DNA COII gene sequencesEvolution54911923PubMedGoogle Scholar
  31. Felsenstein, J. 1981Evolutionary trees from DNA sequences: a maximum likelihood approachJ. Mol. Evol.17368376CrossRefPubMedGoogle Scholar
  32. Fryxell, P.A. 1965Stages in the evolution of Gossypium LAdv. Front. Plant. Sci.103156Google Scholar
  33. Fryxell, P.A. 1979The natural history of the cotton tribe (Malvaceae, tribe Gossypieae)Texas A&M UnivCollege Station and LondonGoogle Scholar
  34. Fryxell, P.A., Lukefahr, M.J. 1967Hampea Schlecht: possible primary host of the cotton boll weevilScience15515681569Google Scholar
  35. Goloboff, P.A. 1994NONA/Pee-Wee, ver. 1.1The American Museum of Natural HistoryNew YorkGoogle Scholar
  36. Gutiérrez, M, Ricciardi A.A., Vrdoljak J., Galván A.C.A., Carnevali R., 1960. Algodones barbadenses indígenas de la Argentina. Recolección de material y formación de una colección. Bol N ° 8, INTA, Centro Regional Chaqueño, Argentina, pp. 1–50.Google Scholar
  37. Guzmán, N., Lía, V., Lanteri, A., Confalonieri, V. 2004Posibles focos naturales de dispersión del picudo del algodonero detectados en Misiones mediante marcadores RAPDs de alta resoluciónJ. Basic Appl. Genet.16140Google Scholar
  38. Haffer, J.L. 1977Pleistocene speciation in Amazonian birdsAmazonia6161192Google Scholar
  39. Haffer, J.L. 1982General aspects of the refuge theoryPrance, G.T. eds. in Biological Diversification in the TropicsColumbia Univ. PressNew York624Google Scholar
  40. Halffter, G. 1964La entomofauna americana. Ideas acerca de su origen y distribuciónFolia Entomol. Mex.61108Google Scholar
  41. Halffter, G. 1974Elements anciens de l’entomofaune neotropicale: ses implications biogeographiquesQuaest. Entomol.10223262Google Scholar
  42. Huelsenbeck, J.P., Ronquist, F. 2001MRBAYES: Bayesian inference of phylogenetic treesBioinformatics17754755CrossRefPubMedGoogle Scholar
  43. Hutchinson, J.B., Silow, R.A., Stephens, S.G. 1947The evolution of GossypiumOxford Univ. PressLondon, U.KGoogle Scholar
  44. Jones, R.W. 2001Evolution of the host plant associations of the Anthonomus grandis species group (Coleoptera: Curculionidae): phylogenetic test of various hypothesisAnn. Entomol. Soc. Am.945158Google Scholar
  45. Jones, R.W., Burke, H.R. 1997New species and host plants of the Anthonomus grandis species group (Coleoptera: Curculionidae)Proc. Entomol. Soc. Wash.99705719Google Scholar
  46. Jones, R.W., Fryxell, P.A., Baro, D.M. 1997Phylogenetic analysis of the genus Hampea (Malvales: Malvaceae: Gossypiae)An. Inst. Biol. UNAM, Ser. Bot.682142Google Scholar
  47. Kim, K.S., Sappington, T.W. 2004Boll weevil (Anthonomus grandis Boheman) (Coleoptera: Curculionidae) dispersal in the southern United States: evidence from mitochondrial DNA variationEnviron. Entomol.33457470Google Scholar
  48. Krapovickas, A., 2000. El género Cienfuegosia y el “picudo del algodonero” al sur del trópico, en Sudamérica. III International Workshop on Integrated Pest Management of the Cotton Boll Weevil in Argentina, Brazil and Paraguay, Workshop Proceedings p. 43.Google Scholar
  49. Kumar, S., Tamura K., Jacobsen I., Nei M., 2001. Molecular Evolutionary Genetics Analysis (MEGA). Version 2.1.Google Scholar
  50. Langor, D.W., Sperling, F.A.H. 1997Mitochondrial DNA sequence divergence in weevils of the Pissodes strobi species complex (Coleoptera: Curculionidae)Insect Mol. Biol.6255265CrossRefPubMedGoogle Scholar
  51. Lanteri, A.A., Confalonieri, V.A. 2003Filogeografía: objetivos, métodos y ejemplosLlorente Bousquets, J.Morrone, J.J. eds. Introducción a la Biogeografía en Latinoamérica: Conceptos, teorías, métodos y aplicacionesFacultad de CienciasUNAM, México185193Google Scholar
  52. Lanteri, A.A., Loiácono, M.S., Marvaldi, A.E. 2002Anthonomus (Coleoptera: Curculionidae) asociados con el algodonero en la ArgentinaRev. Soc. Entomol. Argent.612426Google Scholar
  53. Lanteri, A.A., Marvaldi, A., Suárez, S. 2002Gorgojos de la Argentina y sus plantas huéspedes. Tomo I: Apionidae y CurculionidaePubl. Especial SEA1196Google Scholar
  54. Lia, V.V., Confalonieri, V.A., Comas, C.I., Hunziker, J.H. 2001Molecular phylogeny of Larrea and its allies (Zygophyllaceae): Reticulate evolution and the probable time of Creosote Bush arrival to North AmericaMol. Phyl. Evol.21309320Google Scholar
  55. Litzenberger, G., Chapco, W. 2001A molecular phylogeographic perspective on a fifty-year-old taxonomic issue in grasshopper systematicsHeredity865459CrossRefPubMedGoogle Scholar
  56. Liu, H., Beckenbach, A. 1992Evolution of the Cytochrome Oxidase II gene among 10 orders of insectsMol. Phyl. Evol.14152Google Scholar
  57. Lunt, D., Ibrahim, K., Hewitt, G. 1998mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelusHeredity80633641CrossRefPubMedGoogle Scholar
  58. Lunt, D.H., Zhand, D.X., Szymura, J.M., Hewitt, G.M. 1996The insect cytochrome oxidase I gene evolutionary patterns and conserved primers for phylogenetic studiesInsect Mol. Biol.5153165PubMedGoogle Scholar
  59. Manessi, O. G., 1997. Anthonomus grandis Boh. “El picudo del algodonero” “La super plaga”. FULCPA, Buenos Aires.Google Scholar
  60. Morrone, J.J. 2000What is the Chacoan subregion?Neotropica455168Google Scholar
  61. Morrone, J.J. 2001The Parana subregion and its provincesPhysis (Buenos Aires)5817Google Scholar
  62. Morrone, J.J., 2002. Presentación sintética de un nuevo esquema biogeográfico de América Latina y el Caribe. pp. 267–275, in Proyecto de Red Iberoamericana de Biogeografía y Entomología Sistemática, edited by C. Costa, S.A. Vanin, J.M. Lobo & A.Melic, PrIbes 2002.Google Scholar
  63. Nei, M. 1987Molecular Evolutionary GeneticsColumbia Univ. PressNew YorkGoogle Scholar
  64. Nei, M., Kumar, S. 2000Molecular Evolution and PhylogeneticsOxford Univ. PressNew YorkGoogle Scholar
  65. Nelson, G., Platnick, N.I. 1981Systematics and Biogeography: Cladistics and VicarianceColumbia University PressNew YorkGoogle Scholar
  66. Normark, B.B. 1996Phylogeny and evolution of parthenogenetic weevils of the Aramigus tessellatus species complex (Coleoptera: Curculionidae: Naupactini): Evidence from mitochondrial DNA sequencesEvolution50734745Google Scholar
  67. Normark, B.B., Lanteri, A.A. 1998Incongruence between morphological and mitochondrial DNA characters suggests hybrid origins of parthenogenetic weevil lineages (genus Aramigus)Syst. Biol.47475494PubMedGoogle Scholar
  68. Phillips, G.F. 1963The cytogenetics of Gossypium and the origin of New World cottonsEvolution17460469Google Scholar
  69. Posada, D., Crandall, K.A. 1998Modeltest: Testing the model of DNA substitutionBioinformatics14817818CrossRefPubMedGoogle Scholar
  70. Prado, D.E., Gibbs, P.E. 1993Patterns of species distributions in the dry seasonal forests of South AmericaAnn. Miss. Bot. Garden80903927Google Scholar
  71. Prance, G.T. eds. 1982Biological diversification in the tropicsColumbia Univ. PressNew YorkGoogle Scholar
  72. Raven, P.H 1963Amphitropical relationships in the floras of North and South AmericaQuatern. Rev. Biol.38151177Google Scholar
  73. Raven, P.H., Axelrod, D.I. 1975History of the flora and fauna of Latin AmericaAm. Scient.63420429Google Scholar
  74. Reiss, R.A., Schwert, D.P., Ashworth, A.C. 1995Field preservation of Coleoptera for molecular genetics analysesEnviron. Entomol.24716719Google Scholar
  75. Roehrdanz, R.L. 2001Genetic differentiation of Southeastern boll weevil and Thurberia weevil populations of Anthonomus grandis (Coleoptera: Curculionidae) using mitochondrial DNAAnn. Entomol. Soc. Am.94928935Google Scholar
  76. Roehrdanz, R.L., North, D.T. 1992Mitochondrial DNA restriction fragments variation and biosystematics of the boll weevil, Anthonomus grandisSouthwest. Entomol.17101108Google Scholar
  77. Rzedowski, J 1993Diversity and origins of the Phanerogamic flora of MexicoRamamoorthy, T.P.Bye, R.Lot, A.Fa, J. eds. Biological diversity of Mexico. Origins and distributionOxford Univ. PressNew York129146Google Scholar
  78. Scataglini, M.A., Confalonieri, V.A., Lanteri, A.A. 2000Dispersal of the cotton boll weevil in South America: evidence of the RAPDs analysisGenetica108127136CrossRefPubMedGoogle Scholar
  79. Scataglini, M.A., Lanteri, A.A., Confalonieri, V.A. 2005Phylogeny of the Pantomorus-Naupactus complex based on morphological and molecular data (Coleoptera: Curculionidae)Cladistics21131142CrossRefGoogle Scholar
  80. Sequeira, A., Lanteri, A.A., Scataglini, M.A., Confalonieri, V.A., Farell, B. 2000Are flightless Galapaganus weevils older than the Galápagos Islands they inhabit?Heredity852029CrossRefPubMedGoogle Scholar
  81. Schoonhoven, L., Jermy, T., Loon, J.J.A. 1998Insect-plant biologyChapman & HallLondonGoogle Scholar
  82. Simpson Vuilleumier, B. 1971Pleistocene changes in the fauna and flora of South AmericaScience173771780Google Scholar
  83. Small, R.L., Wendel, J.F. 2000Phylogeny, duplication and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium L., Malvaceae)Mol. Phyl. Evol.167384Google Scholar
  84. Sorenson, M.D., Fleischer, R.C. 1996Multiple independent transposition of mitochondrial DNA control region sequences to the nucleusProc. Natl. Acad. Sci. USA931523915243CrossRefPubMedGoogle Scholar
  85. Swofford, D.L. 1998PAUP*: Phylogenetic Analysis Using Parsimony (and other methods). Ver. 4.0b10Sinauer AssociatesSunderland, MAGoogle Scholar
  86. Tajima, F., Nei, M. 1982Biases of the estimates of DNA divergence obtained by the restriction enzyme techniqueJ. Mol. Evol.17115120Google Scholar
  87. Tamura, K., Nei, M. 1993Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in humans and chimpanzeesMol. Biol. Evol.10512526PubMedGoogle Scholar
  88. Thompson, J.D., Higgins, D.G., Gibson, T.J. 1994CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choiceNucleic Acids Res.2246734680PubMedGoogle Scholar
  89. Wendel, J.F., Schnabel, A., Seelanan, T. 1995An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgressionMol. Phyl. Evol.4298313Google Scholar
  90. Zhang, D.X., Hewitt, G.M. 1996Nuclear integrations: challenges for mitochondrial DNA markersTREE11247251Google Scholar
  91. Zhao, X.P., Si, Y., Hanson, R.E., Crane, C.F., Price, H.J., Stelly, D.M., Wendel, J.F., Patterson, A.H. 1998Dispersal repetitions DNA has colonized new genomes since polyploid formation in cottonGenome Res.8479492PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • María A. Scataglini
    • 1
  • Analia A. Lanteri
    • 2
  • Viviana A. Confalonieri
    • 1
  1. 1.Departamento de Ecología, Genética y Evolución, Fac. Cs. Exactas y Naturales, UBACiudad UniversitariaBuenos AiresArgentina
  2. 2.División EntomologíaMuseo de La Plata, UNLPLa PlataArgentina

Personalised recommendations