Advertisement

Genetica

, Volume 124, Issue 2–3, pp 145–166 | Cite as

Evolutionary conservation of bacterial operons: does transcriptional connectivity matter?

  • Einat Hazkani-Covo
  • Dan Graur
Article

Abstract

In the literature, it has been frequently suggested that the connectivity of a protein, i.e., the number of proteins with which it interacts, is inversely correlated with the rate of evolution. We attempted to extrapolate from proteins to operons by testing the hypothesis that operons with high transcriptional connectivity, i.e., operons that are controlled through interactions with many transcription factors, are evolutionarily more conserved at the structure and sequence levels than low-connectivity operons. With Escherichia coli used as reference, two structural- and two sequence-conservation measures were determined for 82 groups of homologous operons from 30 completely-sequenced bacterial genomes. In E. coli, large operons tend to be regulated by more transcription factors than either smaller operons or single genes. Large E. coli operons that are regulated by single transcription factors were found to be regulated by activators more frequently than by repressors. Levels of sequence conservation and structural conservation of operons were found to be independent of each other, i.e., structurally conserved operons may be divergent in sequence, and vice versa. Transcriptional connectivity was found to influence neither sequence nor structural conservation of operons. Although this finding seems to contradict the situation in genes, a critical review of the literature indicates that although gene connectivity is frequently touted as a factor in determining rates of evolution, only a very small fraction of the variability in degrees of evolutionary conservation is explainable by this factor.

Keywords

bacterial operons evolutionary rates transcriptional connectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anba, J., Bidaud, M., Vasil, M.L., Lazdunski, A. 1990Nucleotide sequence of the Pseudomonas aeruginosa phoB gene, the regulatory gene for the phosphate regulonJ. Bacteriol.17246854689PubMedGoogle Scholar
  2. Babu, M.M, Teichmann, S.A 2003Functional determinants of transcription factors in Escherichia coli: protein families and binding sitesTrends Genet.197579Google Scholar
  3. Bastolla, U., Porto, M., Eduardo Roman, M.H., Vendruscolo, M.H. 2003Connectivity of neutral networks, overdispersion & structural conservation in protein evolutionJ. Mol. Evol.56243254PubMedGoogle Scholar
  4. Choy, H., Adhya, S. 1996Negative Control in Escherichia coli and Salmonella, Cellular and Molecular BiologyNeidhardt, F.C.Curtiss, R.Ingraham, J.L.Lin, E.C.C.Low, K.B. eds. American Society for MicrobiologyWashingtonDC12871299Google Scholar
  5. Clarke, B., Mittenthal, J.E., Senn, M. 1993A model for the evolution of networks of genesJ Theor. Biol.165269289PubMedGoogle Scholar
  6. Dandekar, T., Snel, B., Huynen, M., Bork, P. 1998Conservation of gene order: a fingerprint of proteins that physically interactTrends Biochem. Sci.23324328PubMedGoogle Scholar
  7. Felsenstein, J. 1993PHYLIP (Phylogeny Inference Package) version 3.5c. Department of GeneticsUniversity of WashingtonSeattleGoogle Scholar
  8. Fraser, H.B., Hirsh, A.E., Steinmetz, L.M., Scharfe, C., Feldman, M.W. 2002Evolutionary rate in the protein interaction networkScience296750752PubMedGoogle Scholar
  9. Fraser, H.B., Wall, D.P., Hirsh, A.E. 2003A simple dependence between protein evolution rate and the number of protein-protein interactionsBMC Evol. Biol.311PubMedGoogle Scholar
  10. Graur, D, Li, WH 2000Fundamentals of Molecular Evolution2Sinauer AssociatesSunderland, MA481Google Scholar
  11. Hahn, M.W., Conant, G.C., Wagner, A. 2004Molecular evolution in large genetic networks: does connectivity equal constraint?J. Mol. Evol.58203211PubMedGoogle Scholar
  12. Higgins, D.G., Thompson, J.D., Gibson, T.J. 1996Using CLUSTAL for multiple sequence alignmentsMeth. Enzymol.266383402PubMedGoogle Scholar
  13. Hirsh, A.E., Fraser, H.B. 2001Protein dispensability and rate of evolutionNature41110461049PubMedGoogle Scholar
  14. Huynen, M.A., Bork, P. 1998Measuring genome evolutionProc. Natl. Acad. Sci. USA9558495856PubMedGoogle Scholar
  15. Itoh, T., Takemoto, K., Mori, H., Gojobori, T. 1999Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomesMol. Biol. Evol.16332346PubMedGoogle Scholar
  16. Jordan, I.K., Wolf, Y.I., Koonin, E.V. 2003aCorrectionNo simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowly. BMC Evol. Biol.35Google Scholar
  17. Jordan, I.K., Wolf, Y.I., Koonin, E.V. 2003bNo simple dependence between protein evolution rate and the number of protein-protein interactions: only the most prolific interactors tend to evolve slowlyBMC Evol. Biol.31Google Scholar
  18. Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Collado-Vides, J. 2002The EcoCyc DatabaseNucleic Acids Res.305658PubMedGoogle Scholar
  19. Krylov, D.M., Wolf, Y.I., Rogozin, I.B., Koonin, E.V. 2003Gene loss, protein sequence divergence, gene dispensability, expression level & interactivity are correlated in eukaryotic evolutionGenome Res.1322292235PubMedGoogle Scholar
  20. LatheIII, W.C., Snel, B., Bork, P. 2000Gene context conservation of a higher order than operonsTrends Biochem. Sci.25474479Google Scholar
  21. Maas, W.K., Clark, A.J. 1964Studies on the mechanism of repression of arginine biosynthesis in E. coli. II. Dominance of repressibility in diploidsJ. Mol. Biol.8365370Google Scholar
  22. Makino, K., Shinagawa, H., Amemura, M., Nakata, A. 1986Nucleotide sequence of the pho B gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12J. Mol. Biol.1903744PubMedGoogle Scholar
  23. Martinez-Antonio, A., Collado-Vides, J. 2003Identifying global regulators in transcriptional regulatory networks in bacteriaCurr. Opin. Microbiol.6482489PubMedGoogle Scholar
  24. Mushegian, A.R., Koonin, E.V. 1996Gene order is not conserved in bacterial evolutionTrends Genet.12289290PubMedGoogle Scholar
  25. Pal, C., Papp, B., Hurst, L.D. 2001Highly expressed genes in yeast evolve slowlyGenetics158927931PubMedGoogle Scholar
  26. Pragai, Z., Allenby, N.E., O‘Connor, N., Dubrac, S., Rapoport,  G. 2004Transcriptional regulation of the phoPR operon in Bacillus subtilisJ. Bacteriol.18611821190PubMedGoogle Scholar
  27. Salgado, H., Santos-Zavaleta, A., Gama-Castro, S., Millan-Zarate,  D., Blattner, F.R. 2000RegulonDB (version 3.0): Transcriptional regulation and operon organization in Escherichia coli K-12Nucleic Acids Res.286567PubMedGoogle Scholar
  28. Salgado, H., Gama-Castro, S., Martinez-Antonio, A., Diaz-Peredo,  E., Sanchez-Solano, F. 2004RegulonDB (version 4.0): transcriptional regulation, operon organization and growth conditions in Escherichia coli K-12Nucleic Acids Res.32D303D306PubMedGoogle Scholar
  29. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U. 2002Network motifs in the transcriptional regulation network of Escherichia coliNat. Genet.316468PubMedGoogle Scholar
  30. Siefert, J.L., Martin, K.A., Abdi, F., Widger, W.R., Fox, G.E. 1997Conserved gene clusters in bacterial genomes provide further support for the primacy of RNAJ Mol. Evol.45467472PubMedGoogle Scholar
  31. Tatusov, R.L., Koonin, E.V., Lipman, D.J. 1997A genomic perspective on protein familiesScience278631637PubMedGoogle Scholar
  32. Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T. 2001The COG database: new developments in phylogenetic classification of proteins from complete genomesNucleic Acids Res.292228PubMedGoogle Scholar
  33. Thattai, M., van Oudenaarden, A. 2001Intrinsic noise in gene regulatory networksProc. Natl. Acad. Sci. USA9886148619PubMedGoogle Scholar
  34. Thieffry, D., A., Huerta, M., Perez-Rueda, E., Collado-Vides, J. 1998From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coliBioessays20433440PubMedGoogle Scholar
  35. von Kruger, W.M.A., Humphreys, S., Ketley, J.M. 1999A role for the PhoBR regulatory system homologue in the Vibrio cholerae phosphate-limitation response and intestinal colonizationMicrobiology14524632475PubMedGoogle Scholar
  36. Wanner, B.L. 1993Gene regulation by phosphate in enteric bacteriaJ. Cell Biochem.514754PubMedGoogle Scholar
  37. Wanner, B.L., Chang, B.D. 1987 The phoBR operon in Escherichia coli K-12J. Bacteriol.16955695574PubMedGoogle Scholar
  38. Watanabe, H., Mori, H., Itoh, T., Gojobori, T. 1997Genome plasticity as a paradigm of eubacteria evolutionJ. Mol. Evol.44S5764PubMedGoogle Scholar
  39. Williams, E.J., Hurst, L.D. 2000The proteins of linked genes evolve at similar ratesNature407900903PubMedGoogle Scholar
  40. Wilson, A.C., Carlson, S.S., White, T.J. 1977Biochemical evolutionAnnu. Rev. Biochem.46573639PubMedGoogle Scholar
  41. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S., Koonin, E.V. 2001Genome alignment, evolution of prokaryotic genome organization & prediction of gene function using genomic contextGenome Res.11356372PubMedGoogle Scholar
  42. Wolf, Y.I., Karev, G., Koonin, E.V. 2002Scale-free networks in biology: new insights into the fundamentals of evolution?Bioessays24105109PubMedGoogle Scholar
  43. Yanai, I., Mellor, J.C., DeLisi, C. 2002Identifying functional links between genes using conserved chromosomal proximityTrends Genet.18176179PubMedGoogle Scholar
  44. Yang, J., Gu, Z., Li, W.H. 2003Rate of protein evolution versus fitness effect of gene deletionMol. Biol. Evol.20772774PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityIsrael
  2. 2.Department of Biology and BiochemistryUniversity of HoustonHoustonUSA

Personalised recommendations