Advertisement

Genetica

, Volume 125, Issue 2–3, pp 311–323 | Cite as

Population Genetic Structure of Two Columnar Cacti with a Patchy Distribution in Eastern Brazil

  • Evandro M. Moraes
  • Aluana G. Abreu
  • Sónia C.S. Andrade
  • Fabio M. Sene
  • Vera N. Solferini
Article

Abstract

The genetic variability and population genetic structure of six populations of Praecereus euchlorus and Pilosocereus machrisii were investigated. The genetic variability in single populations of Pilosocereus vilaboensis, Pilosocereus aureispinus, and Facheiroa squamosa was also examined. All of these cacti species have a patchy geographic distribution in which they are restricted to small areas of xeric habitats in eastern Brazil. An analysis of genetic structure was used to gain insights into the historical mechanisms responsible for the patchy distribution of P. euchlorus and P. machrisii. High genetic variability was found at the populational level in all species (P=58.9–92.8%, Ap=2.34–3.33, He=0.266–0.401), and did not support our expectations of low variability based on the small population size. Substantial inbreeding was detected within populations (FIS=0.370–0.623). In agreement with their insular distribution patterns, P. euchlorus and P. machrisii had a high genetic differentiation (FST=0.484 and FST=0.281, respectively), with no evidence of isolation by distance. Accordingly, estimates of gene flow (Nm) calculated from FST and private alleles were below the level of Nm=1 in P. machrisii and P. euchlorus. These results favored historical fragmentation as the mechanism responsible for the patchy distribution of these two species. The genetic distance between P. machrisii and P. vilaboensis was not compatible with their taxonomic distinction, indicating a possible local speciation event in this genus, or the occurrence of introgression events.

Keywords

Cactaceae Facheiroa squamosa Pilosocereus aureispinus, Pilosocereus machrisii Pilosocereus vilaboensis Praecereus euchlorus seasonally dry forests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bigarella, J.J., Andrade-Lima, D. 1982Paleoenvironmental changes in BrazilPrance, C.T. eds. in Biological Diversifications in the TropicsColumbia University PressNew York2740Google Scholar
  2. Borba, E.L., Felix, J.M., Solferini, V.N., Semir, J. 2001Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markersAm. J. Bot.88 Google Scholar
  3. Boyle, T.H. 1997The genetics of self-incompatibility in the genus Schlumbergera (Cactaceae)J. Hered.88209214Google Scholar
  4. Calder, W.A. 1990Territorial hummingbirdsNat. Geog. Res.75669Google Scholar
  5. Clapperton, C.M. 1993Nature of environmental changes in South America at the Last Glacial MaximumPalaeo101189208Google Scholar
  6. Clark-Tapia, R., Molina-Freaner, F. 2003The genetic structure of a columnar cactus with a disjunct distribution: Stenocereus gummosus in the Sonoran desertHeredity90443450CrossRefPubMedGoogle Scholar
  7. Clark-Tapia, R., Alfonso-Corrado, C., Eguiarte, L.E., Molina-Freaner, F. 2005Clonal diversity and distribution in Estenocereus erucas (Cactaceae), a narrow endemic cactus of the Sonoran DesertAm. J. Bot.92272278Google Scholar
  8. Crow, J.F., Aoki, K. 1984Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. Proc. Natl. Acad. SciUSA8160736077Google Scholar
  9. Faegri, K., Pijl, L. 1979The Principles of Pollination EcologyPergamon PressLondonGoogle Scholar
  10. Fleming, T.H., Holland, J.N. 1998The evolution of obligate mutualism: the senita and senita mothOecologia114368378CrossRefGoogle Scholar
  11. Gentry, A.H. 1995Diversity and floristic composition of neotropical dry forestsBullock, S.H.Mooney Medina, H.A. E. eds. in Seasonally Dry Tropical ForestsCambridge University PressCambridge146194Google Scholar
  12. Gibbs, J.P. 2001Demography versus habitat fragmentation as determinants of genetic variation in wild populationsBiol. Conserv.1001520CrossRefGoogle Scholar
  13. Giulietti, A.M., Pirani, J.R. 1988Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, BrazilHeyer Vanzolini, W.R. P.E. eds. in Proceedings of a Workshop on Neotropical Distribution PatternsAcademia Brasileira de CiênciasRio de Janeiro3969Google Scholar
  14. Goudet, J. 2001FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from J. Goudet, 1995 FSTAT (Version 1.2) a computer program to calculate F-statisticsJ. Hered.86485486Google Scholar
  15. Hamrick, J.L., Godt, M.J.W. 1989Allozyme diversity in plant speciesBrown, A.H.D.Clegg, M.T.Kahler, A.L.Weir, B.S. eds. in Plant Population Genetics, Breeding and Genetic ResourcesSinauerSunderland4363Google Scholar
  16. Hamrick, J.L., Godt, M.J.W., Siierman-Broyles, S.L. 1992Factors influencing levels of genetic diversity in woody plant speciesNew Forests695124CrossRefGoogle Scholar
  17. Hamrick, J.L., Nason, J.D., Fleming, T.H., Nassar, J.M. 2002Genetic diversity in columnar cactiFleming, T.H.Valient-Banuet, A. eds. in Evolution, Ecology and Conservation of Columnar Cacti and their MutualistsUniversity of Arizona PressTucson4363Google Scholar
  18. Holm, S. 1979A simple sequentially rejective multiple test procedureScand. J. Stat.66570Google Scholar
  19. Jesus, F.F., Solferini, V.N., Semir, J., Prado, P.I. 2001Local genetic differentiation in Proteopsis argentea (Asteraceae), a perennial herb endemic in BrazilPlant. Syst. Evol.2265968CrossRefGoogle Scholar
  20. Levin, D.A. 1993Local speciation in plants: the rule not the exceptionSyst. Bot.18197208Google Scholar
  21. Locatelli, E., Machado, I.C., Medeiros, P. 1997Floral biology and bat pollination in Pilosocereus catingicola (Cactaceae) in northeastern BrazilBradleya152834Google Scholar
  22. Lovelles, M.D., Hamrick, J.L. 1984Ecological determinants of genetic structure in plant populationsAnn. Rev. Ecol. Syst.156595CrossRefGoogle Scholar
  23. Macnair, M.R. 1989The potential for rapid speciation in plantsGenome31203210Google Scholar
  24. Martínez-Palacios, A., Eguiarte, L.E., Furnier, A.G.R. 1999Genetic diversity of the endangered endemic Agave victoriae-reginae (Agavaceae) in the Chihuahuan DesertAm. J.␣Bot.8610931098PubMedGoogle Scholar
  25. Miller, M.P., 1997. Tools for population genetic analysis (TFPGA) 1.3: A windows program for the analysis of allozyme and molecular population genetic data. http://www.bioweb.usu.edu/mpmbio/Google Scholar
  26. Nassar, J.M., Ramirez, N., Linares, O. 1997Comparative pollination biology of Venezuelan columnar cacti and the role of nectar-feeding bats in their sexual reproductionAm. J. Bot.84918927Google Scholar
  27. Nassar, J.M., Hamrick, J.L., Fleming, T.H. 2001Genetic variability and population structure of the mixed-mating cactus, Melocactus curvispinus (Cactaceae)Heredity876979CrossRefPubMedGoogle Scholar
  28. Nassar, J.M., Hamrick, J.L., Fleming, T.H. 2002Allozyme diversity and genetic structure of leafy cactus (Pereskia guamamcho, Cactaceae)J. Hered.93193200CrossRefPubMedGoogle Scholar
  29. Nassar, J.M., Hamrick, J.L., Fleming, T.H. 2003Population genetic structure of Venezuelan chiropterophilous columnar cacti (Cactaceae)Am. J. Bot.9016281637Google Scholar
  30. Nason, J.D., Hamrick, J.L., Fleming, T.H. 2002Historical vicariance and postglacial colonization effects on the evolution of genetic structure in Lophocereus, a Sonoran desert columnar cactusEvolution5622142226PubMedGoogle Scholar
  31. Nei, M. 1978Estimation of average heterozygosity and genetic distance from a small number of individualsGenetics89583590Google Scholar
  32. Nei, M. 1987in Molecular Evolutionary GeneticsColumbia University PressNew YorkGoogle Scholar
  33. Pennington, R.T., Prado, D.E., Pendry, C.A. 2000Neotropical seasonally dry forests and Quaternary vegetation changesJ. Biogeogr.27261273CrossRefGoogle Scholar
  34. Prado, D.E., Gibbs, P.E. 1993Patterns of species distributions in the dry seasonal forests of South AmericaAnn. Missouri Bot. Gard.80902927Google Scholar
  35. Prance, G.T. 1982A review of the phytogeographic evidence for Pleistocene climatic changes in the neotropicsAnn. Missouri Bot. Gard.69594624Google Scholar
  36. Reynolds, J., Weir, B.S., Cockerham, C.C. 1983Estimation of the coancestry coefficient: basis for a short-term genetic distanceGenetics105767779Google Scholar
  37. Ronquist, F. 1997Dispersal-vicariance analysis: a new approach to the quantification of historical biogeographySyst. Biol.46195203Google Scholar
  38. Slatkin, M. 1985Rare alleles as indicators of gene flowEvolution395365Google Scholar
  39. Slatkin, M. 1994Gene flow and population structureReal, L. eds. in Ecological GeneticsPrinceton University PressNew Jersey417Google Scholar
  40. Sun, M., Garders, F.R. 1990Outcrossing rates and allozyme variation in rayed and rayless morphs of Bidens pilosaHeredity64139143Google Scholar
  41. Taylor, N.P. 2000Taxonomy and Phytogeography of the Cactaceae of Eastern Brazil. PhD ThesisThe Open UniversityEnglandGoogle Scholar
  42. Weir, B.S., Cockerham, C.C. 1984Estimating F-statistics for the analysis of population structureEvolution3813581370Google Scholar
  43. Wright, S. 1978Evolution and the Genetics of Populations, Vol. 4. Variability within and among Natural PopulationsUniversity of Chicago PressChicagoGoogle Scholar
  44. Young, A., Boyle, T., Brown, T. 1996The population genetic consequences of habitat fragmentation for plantsTrends Ecol. Evol.11413418CrossRefGoogle Scholar
  45. Zappi, D.Z., 1994. Pilosocereus (Cactaceae), in The genus in Brazil, edited by D. Hunt and N. Taylor. Royal Botanic Gardens, KewGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Evandro M. Moraes
    • 1
  • Aluana G. Abreu
    • 2
  • Sónia C.S. Andrade
    • 2
  • Fabio M. Sene
    • 1
  • Vera N. Solferini
    • 2
  1. 1.Departamento de Genética, Faculdade de Medicina de Ribeirão PretoUniversidade de São Paulo (USP)Ribeirão PretoBrazil
  2. 2.Departamento de Genética e Evolução, Instituto de BiologiaUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations