, Volume 123, Issue 1–2, pp 25–37 | Cite as

QTL mapping and the genetic basis of adaptation: recent developments

  • Zhao-Bang Zeng


Quantitative trait loci (QTL) mapping has been used in a number of evolutionary studies to study the genetic basis of adaptation by mapping individual QTL that explain the differences between differentiated populations and also estimating their effects and interaction in the mapping population. This analysis can provide clues about the evolutionary history of populations and causes of the population differentiation. QTL mapping analysis methods and associated computer programs provide us tools for such an inference on the genetic basis and architecture of quantitative trait variation in a mapping population. Current methods have the capability to separate and localize multiple QTL and estimate their effects and interaction on a quantitative trait. More recent methods have been targeted to provide a comprehensive inference on the overall genetic architecture of multiple traits in a number of environments. This development is important for evolutionary studies on the genetic basis of multiple trait variation, genotype by environment interaction, host–parasite interaction, and also microarray gene expression QTL analysis.


genetic architecture genetic basis of adaptation genetic correlation genotype by environment interaction microarrays QTL mapping quantitative trait loci 



composite interval mapping


expectation and maximization algorithm


interval mapping


multiple interval mapping


quantitative trait loci


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Basten, C., B.S. Weir & Z.-B. Zeng, 1995–2004. QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC ( Scholar
  2. Brem, R.B., Yvert, G., Clinton, R., Kruglyak, L. 2002Genetic dissection of transcriptional regulation in budding yeastScience296752755CrossRefPubMedGoogle Scholar
  3. Broman, K.W., Speed, T.P. 2002A model selection approach for the identification of quantitative trait loci in experimental crossesJ. R. Stat. Soc. B64641656Google Scholar
  4. Carlborg, O., Andersson, L., Kinghorn, B. 2000The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait lociGenetics15520032010Google Scholar
  5. Eaves, I.A., Wicker, L.S., Ghandour, G., Lyons, P.A., Peterson, L.B., Todd, J.A., Glynne, R.J. 2002Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of Type 1 diabetesGenome Res.12232243Google Scholar
  6. Falconer, D.S. 1952The problem of environment and selectionAm. Nat.86293298Google Scholar
  7. Jiang, C., Zeng, Z.-B. 1995Multiple trait analysis of genetic mapping for quantitative trait lociGenetics14011111127PubMedGoogle Scholar
  8. Jiang, C., Zeng, Z.-B. 1997Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred linesGenetica1014758Google Scholar
  9. Kao, C.-H., Zeng, Z.-B. 1997General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithmBiometrics53653665Google Scholar
  10. Kao, C.-H., Zeng, Z.-B., Teasdale, R. 1999Multiple interval mapping for quantitative trait lociGenetics15210231216Google Scholar
  11. Lander, E.S., Botstein, D. 1989Mapping Mendelian factors underlying quantitative traits using RFLP linkage mapsGenetics121185199PubMedGoogle Scholar
  12. Liu, J., Mercer, J.M., Stam, L.F., Gibson, G.C., Zeng, Z.-B., Laurie, C.C. 1996Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritianaGenetics14211291145Google Scholar
  13. Nakamichi, R., Ukai, Y., Kishino, H. 2001Detection of closely linked multiple quantitative trait loci using a genetic algorithmGenetics158463475Google Scholar
  14. Mackay, T.F.C. 2001Quantitative trait loci in DrosophilaNat. Rev. Genet.21120Google Scholar
  15. Mauricio, R. 2001Mapping quantitative trait loci in plants: uses and caveats for evolutionary biologyNat. Rev. Genet.2370381Google Scholar
  16. Satagopan, J.M., Yandell, B.S., Newton, M.A., Osborn, T.C. 1996A Bayesian approach to detect quantitative trait loci using Markov chain Monte CarloGenetics144805816Google Scholar
  17. Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Colinayo, V., Ruff, T.G., Milligan, S.B., Lamb, J.R., Cavet, G., Linsley, P.S., Mao, M., Stoughton, R.B., Friend, S.H. 2003Genetics of gene expression surveyed in maize, mouse and manNature422297302CrossRefPubMedGoogle Scholar
  18. Sen, S., Churchill, G.A. 2001A statistical framework for quantitative trait mappingGenetics159371387PubMedGoogle Scholar
  19. Sillanpaa, M.J., Arjas, E. 1998Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross dataGenetics14813731388Google Scholar
  20. Wang, S., C. Basten & Z-.B Zeng, 1999–2004. WINDOWS QTL Cartographer. Department of Statistics, North Carolina State University, Raleigh, NC ( Scholar
  21. Weber, K.E. 1990Selection on wing allometry in Drosophila melanogasterGenetics126975989Google Scholar
  22. Weber, K., Eisman, R., Higgins, S., Morey, L., Patty, A., Tausek, M., Zeng, Z.-B. 2001An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogasterGenetics15910451057Google Scholar
  23. Weber, K., Eisman, R., Morey, L., Patty, A., Sparks, J., Tausek, M., Zeng, Z.-B. 1999An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogasterGenetics153773786Google Scholar
  24. Zeng, Z.-B. 1994Precision mapping of quantitative trait lociGenetics13614571468PubMedGoogle Scholar
  25. Zeng, Z.-B., Kao, C.-H., Basten, C.J. 1999Estimating the genetic architecture of quantitative traitsGenet. Res.74279289Google Scholar
  26. Zeng, Z.-B., Liu, J., Stam, L.F., Kao, C.-H., Mercer, J.M., Laurie, C.C. 2000Genetic architecture of a morphological shape difference between two Drosophila speciesGenetics154299310Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Departments of Statistics and Genetics & Bioinformatics Research CenterNorth Carolina State UniversityRaleighUSA

Personalised recommendations