, Volume 123, Issue 1–2, pp 49–62 | Cite as

Genetics and adaptation in structured populations: sex ratio evolution in Silene vulgaris

  • Matthew S. Olson
  • David E. McCauley
  • Douglas Taylor


Theoretical models suggest that population structure can interact with frequency dependent selection to affect fitness in such a way that adaptation is dependent not only on the genotype of an individual and the genotypes with which it co-occurs within populations (demes), but also the distribution of genotypes among populations. A canonical example is the evolution of altruistic behavior, where the costs and benefits of cooperation depend on the local frequency of other altruists, and can vary from one population to another. Here we review research on sex ratio evolution that we have conducted over the past several years on the gynodioecious herb Silene vulgaris in which we combine studies of negative frequency dependent fitness on female phenotypes with studies of the population structure of cytoplasmic genes affecting sex expression. This is presented as a contrast to a hypothetical example of selection on similar genotypes and phenotypes, but in the absence of population structure. Sex ratio evolution in Silene vulgaris provides one of the clearest examples of how selection occurs at multiple levels and how population structure, per se, can influence adaptive evolution.


cytoplasmic male sterility gynodioecy mitochondrial DNA subjective fitness 



cytoplasmic male sterility


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashman, T.-L. 1999Determinants of sex allocation in a gynodioecious wild strawberry: implications for the evolution of dioecy and sexual dimorphismJ. Evol. Biol.12648661Google Scholar
  2. Bierzychudek, P. 1981Pollinator limitation of plant reproductive effortAm. Nat.117838840Google Scholar
  3. Charlesworth, D. 1981A further study of the problem of the maintenance of females in gynodioecious speciesHeredity462739Google Scholar
  4. Charlesworth, D., Laporte, V. 1998The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgarisGenetics15012671282Google Scholar
  5. Cosmides, L.M., Tooby, J. 1981Cytoplasmic inheritance and intragenomic conflictJ. Theor. Biol.8983129Google Scholar
  6. Couvet, D.O. Ronce, Gliddon, C. 1998The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecyAm. Nat.1525970Google Scholar
  7. Coyne, J.A., Barton, N.H., Turelli, M. 1997Perspective: a critique of Sewall Wright’s shifting balance theory of evolutionEvolution51643671Google Scholar
  8. Coyne, J.A., Barton, N.H., Turelli, M. 2000Is Wright’s shifting balance process important in evolution?Evolution54306317Google Scholar
  9. Haan, A.A., Koelewijn, H.P., Hundscheid, M.P.J., Damme, J.M.M 1997The dynamics of gynodioecy in Plantago lanceolata L. II. Mode of action and frequencies of restorer alleles.Genetics14713171328Google Scholar
  10. Delannay, X., Gouyon, P.H., Valdeyron, G. 1981Mathematical study of the evolution of gynodioecy with cytoplasmic inheritance under the effect of a nuclear restorer geneGenetics99169181Google Scholar
  11. Dulberger, R., Horovitz, A. 1984Gender polymorphism in flowers of Silene vulgaris (Moench) Garcke (Caryophyllaceae)Bot. J. Linn. Soc.89101117Google Scholar
  12. Emery, S.N. 2001Inbreeding depression and its consequences in Silene vulgarisVanderbilt UniversityNashville, TN, USAMasters ThesisGoogle Scholar
  13. Fisher, R.A. 1958The Genetical Theory of Natural SelectionOxford University PressOxford2nd revised ednGoogle Scholar
  14. Frank, S.A. 1989The evolutionary dynamics of cytoplasmic male sterilityAm. Nat.133345376Google Scholar
  15. Frank, S.A., Barr, C.M. 2001Spatial dynamics of cytoplasmic male sterilitySilvertown,  J.Antonovics, J. eds. Integrating Ecology and Evolution in a Spatial ContextBlackwell ScienceOxford, UK219243Google Scholar
  16. Galloway, L.F., Fenster, C.B. 2000Population differentiation in an annual legume: local adaptationEvolution5411731181Google Scholar
  17. Goodnight, C.J., Scwartz, J.M., Stevens, L. 1992Contextual analysis of models of group selection, soft selection, hard selection, and the evolution of altruismAm. Nat.140743761Google Scholar
  18. Goodnight, C.J., Wade, M.J. 2000The ongoing synthesis: a reply to Coyne, Barton, and TurelliEvolution54317324Google Scholar
  19. Gouyon, P.H., Couvet, D. 1987A conflict between two sexes, females and hermaphroditesStearns, S.C. eds. The Evolution of Sex and its ConsequencesBirkauser VerlagBasel245260Google Scholar
  20. Gouyon, P.-H., Vichot, F., Damme, J.M.M. 1991Nuclear-cytoplasmic male sterility: single-point equilibria versus limit cyclesAm. Nat.137198514Google Scholar
  21. Graff, A. 1999Population sex structure and reproductive fitness in gynodioecious Sidalaceea malviflora malviflora (Malvaceae)Evolution5317141722Google Scholar
  22. Gregorius, H.-R., Ross, M.D. 1984Selection with gene-cytoplasm interactions. I. Maintenance of cytoplasm polymorphisms.Genetics107165178Google Scholar
  23. Hatcher, M.J. 2000Persistence of selfish genetic elements: population structure and conflictTrends Ecol. Evol.15271277Google Scholar
  24. Hurst, L.D., Atlan, A., Bengtsson, B.O. 1996Genetic conflictsQ. Rev. Biol.71317364Google Scholar
  25. Jacobs, M.S., Wade, M.J. 2003A synthetic review of the theory of gynodioecyAm. Nat.161837851Google Scholar
  26. Jolls, C.L. 1984The maintenance of hermaphrodites and females in populations of Silene vulgaris (Moench) Garcke (CaryoplyllaceaeAm. J. Bot.7180Google Scholar
  27. Jolls, C.L., Chenier, T.C. 1989Gynodioecy in Silene vulgaris (Caryophyllaceae): progeny success, experimental design, and maternal effectsAm. J. Bot.7613601367Google Scholar
  28. Levings, C.S. III. 1993Thoughts on cytoplasmic male sterility in cms-T maizePlant Cell512851290Google Scholar
  29. Lewis, D. 1941Male sterility in natural populations of hermaphroditic plantsNew Phytol.405663Google Scholar
  30. Lloyd, D.G. 1974Theoretical sex ratios of dioecious and gynodioecious angiospermsHeredity321131Google Scholar
  31. McCauley, D.E. 1998The genetic structure of a gynodioecious plant: nuclear and cytoplasmic genesEvolution52255260Google Scholar
  32. McCauley, D.E., Brock, M.T. 1998Frequency-dependent fitness in Silene vulgaris, a gynodioecious plantEvolution523036Google Scholar
  33. McCauley, D.E., Olson, M.S., Emery, S.N., Taylor, D.L. 2000aSex ratio variation in a gynodioecious plant: spatial scale and fitness consequencesAm. Nat.155814819Google Scholar
  34. McCauley, D.E., Olson, M.S., Taylor, D.R. 2000bThe influence of metapopulation structure on genotypic fitness in a gynodioecious plantEvol. Ecol.14181194Google Scholar
  35. McCauley, D.E., Taylor, D.R. 1997Local population structure and sex ratio: evolution in gynodioecious plantsAm. Nat.150406419Google Scholar
  36. Olson, M.S., Antonovics, J.A. 2000Correlations between male and female reproduction in the near-dioecious herb Astilbe biternataAm. J. Bot.87837844Google Scholar
  37. Olson, M.S., McCauley, D.E. 2000Linkage disequilibrium and phylogenetic congruence between chloroplast and mitochondrial haplotypes in Silene vulgarisProc. R. Soc. Lond. B Biol. Sci.26718011808Google Scholar
  38. Olson, M.S., McCauley, D.E. 2002Mitochondrial DNA diversity, population structure, and gender association in the gynodioecious plant Silene vulgarisEvolution56253262Google Scholar
  39. Pannell, J. 1997The maintenance of gynodioecy and androdioecy in a metapopulationEvolution511020Google Scholar
  40. Petterson, M.W. 1992Advantages of being a specialist female in nondioecious Silene vulgaris S.L. (Caryophyllaceae).Am. J. Bot.7913891395Google Scholar
  41. Ross, M.D., Gregorius, H.-R. 1985Selection with gene-cytoplasm interactions. II. Maintenance of gynodioecy.Genetics109427439Google Scholar
  42. Saumitou-Laprade, P., Cuguen, J., Vernet, P. 1994Cytoplasmic male sterility in plants: molecular evidence and the nucleocytoplasmic conflictTrends Ecol. Evol.9431435Google Scholar
  43. Schnable, P.S., Wise, R.P. 1998The molecular basis of cytoplasmic male sterility and fertility restorationTrends Plant Sci.3175180Google Scholar
  44. Slatkin, M. 1977Gene flow and genetic drift in a species subject to frequent local extinctionsTheor. Popul. Biol.12253262Google Scholar
  45. Taylor, D.R., McCauley, D., Trimble, S. 1999Colonization success of females and hermaphrodites in the gynodioecious plant, Silene vulgarisEvolution53745751Google Scholar
  46. Taylor, D.R., Olson, M.S., McCauley, D.E. 2001A quantitative genetic analysis of nuclear-cytoplasmic male sterility in structured populations of Silene vulgarisGenetics158833841Google Scholar
  47. Damme, J.M.M. 1983Gynodioecy in Plantago lanceolata L. II. Inheritance of three male sterility types.Heredity50253273Google Scholar
  48. Wade, M.J., Goodnight, C.J. 1998Perspective: The theories of Fisher and Wright in the context of metapopulations: when nature does many small experimentsEvolution5215371553Google Scholar
  49. Werren, J.H., Beukeboom, L.W. 1998Sex determination, sex ratios, and genetic conflictAnnu. Rev. Ecol. Syst.29233261Google Scholar
  50. Wilson, D.S. 1979Structured demes and trait-group variationAm. Nat.113606610Google Scholar
  51. Wilson, D.S. 1980The Natural Selection of Populations and CommunitiesBenjamin/CummingsMenlo Park, CA, USAGoogle Scholar
  52. Wright, S. 1931Evolution in Mendelian populationsGenetics1697159Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Matthew S. Olson
    • 1
  • David E. McCauley
    • 2
  • Douglas Taylor
    • 3
  1. 1.Institute of Arctic Biology and Department of Biology and Wildlife University of Alaska FairbanksFairbanksUSA
  2. 2.Department of Biological ScienceVanderbilt UniversityNashville
  3. 3.Department of BiologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations