Modeling multiscalar influences on natural hazards vulnerability: a proof of concept using coastal hazards in Sarasota County, Florida

Abstract

Quantitative vulnerability modeling provides local decision makers and planners with tangible scores that they can utilize to develop and implement effective mitigation strategies. Considering appropriate scale and quantitative methods in vulnerability assessments can help decision makers develop hazard mitigation policies that are effective at the jurisdictional level at which they are implemented. Several types of statistical approaches such as principal component analysis, classical regression and simultaneous autoregressive models have been used to measure vulnerability at various scales (e.g. state or county), but these approaches have limitations for measuring sub-county vulnerability. This paper discusses existing statistical methods utilized in vulnerability assessments and presents a hierarchical generalized linear regression model (Hierarchical GLM) with multiscalar indicators and spatial components. Our model results illustrate that certain indicators are spatially and scalar dependent, providing evidence that examining vulnerability at a sub-county scale while also maintaining a multiscalar perspective offers additional information about social-environmental vulnerability than provided by typical approaches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abramson, D. M., Grattan, L. M., Mayer, B., et al. (2015). The resilience activation framework: A conceptual model of how access to social resources promotes adaptation and rapid recovery in post-disaster settings. The Journal of Behavioral Health Services and Research, 42(1), 42–57.

    Google Scholar 

  2. Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281.

    Google Scholar 

  3. Aldoory, L., Kim, J.-N., & Tindall, N. (2010). The influence of perceived shared risk in crisis communication: Elaborating the situational theory of publics. Public Relations Review, 36(2), 134–140.

    Google Scholar 

  4. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Geographical Analysis, 27(2), 93.

    Google Scholar 

  5. Anselin, L., Gallo, J. L., & Jayet, H. (2008). Spatial panel econometrics. In L. Mátyás & P. Sevestre (Eds.), The econometrics of panel data. Advanced studies in theoretical and applied econometrics (vol 46, pp. 625–660). Berlin: Springer.

  6. Arbia, G., & Petrarca, F. (2011). Effects of MAUP on spatial econometric models. Letters in Spatial and Resource Sciences, 4(3), 173–185.

    Google Scholar 

  7. Arbuckle, J. G., Randle, R., & Wilson, P. A. J. (1991). Emergency planning and community right-to-know Act (EPCRA). In J. G. Arbuckle, M. E. Bosco, D. R. Case, E. P. Laws, J. C. Martin, M. E. Miller, et al. (Eds.), Environmental law handbook (pp. 963–1004). Rockville: Government Institutes Inc.

    Google Scholar 

  8. Bagheri, M., Verma, M., & Verter, V. (2014). Transport mode selection for toxic gases: Rail or road? Risk Analysis, 34(1), 168–186.

    Google Scholar 

  9. Bakkensen, L. A., Fox-Lent, C., Read, L. K., et al. (2016). Validating resilience and vulnerability indices in the context of natural disasters. Risk Analysis, 37(5), 982–1004.

    Google Scholar 

  10. Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2004). Hierarchical modeling and analysis for spatial data. Boca Raton: Chapman & Hall.

    Google Scholar 

  11. Beccari, B. (2016). A comparative analysis of disaster risk, vulnerability and resilience composite indicators. PLOS Currents Disasters. https://doi.org/10.1371/currents.dis.453df025e34b682e9737f95070f9b970

    Article  Google Scholar 

  12. Bell, B. A., Ene, M., & Schoeneberger, J. (2013). A multilevel model primer using SAS PROC MIXED. In SAS global forum (pp. 0–19). Cary: SAS Institute Inc.

  13. Benson, T., Chamberlin, J., & Rhinehart, I. (2005). An investigation of the spatial determinants of the local prevalence of poverty in rural Malawi. Food Policy, 30(5), 532–550.

    Google Scholar 

  14. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological), 36(2), 192–236.

    Google Scholar 

  15. Bin, O., Kruse, J. B., & Landry, C. E. (2008). Flood hazards, insurance rates, and amenities: Evidence from the coastal housing market. Journal of Risk and Insurance, 75(1), 63–82.

    Google Scholar 

  16. Birkmann, J. (2007). Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Global Environment Change Part B, 7(1), 20–31.

    Google Scholar 

  17. Birkmann, J., Cardona, O. D., Carreño, M. L., et al. (2013). Framing vulnerability, risk and societal responses: The MOVE framework. Natural Hazards, 67(2), 193–211.

    Google Scholar 

  18. Birkmann, J., Kienberger, S., & Alexander, D. (2014). Assessment of vulnerability to natural hazards: A European perspective. Amsterdam: Elsevier.

    Google Scholar 

  19. Brunsdon, C., & Comber, L. (2015). An introduction to R for spatial analysis and mapping. London: Sage.

    Google Scholar 

  20. Burt, J. E., Barber, G. M., & Rigby, D. L. (2009). Elementary statistics for geographers. New York: Guilford Press.

    Google Scholar 

  21. Burton, C., Rufat, S., & Tate, E. (2018). Social vulnerability. In S. Fuchs & T. Thaler (Eds.), Vulnerability and resilience to natural hazards (pp. 53–81). Cambridge: Cambridge University Press.

    Google Scholar 

  22. Census USBot. (1994). Geographic areas reference manual. US Department of Commerce, Economics and Statistics Administration, Bureau of the Census.

  23. Chakraborty, J. (2011). Revisiting Tobler’s first law of geography: spatial regression models for assessing environmental justice and health risk disparities. In J. Maantay & S. McLafferty (Eds.), Geospatial analysis of environmental health (pp. 337–356). Dordrecht: Springer.

    Google Scholar 

  24. Chatterjee, S., & Simonoff, J. S. (2013). Handbook of regression analysis. New York: Wiley.

    Google Scholar 

  25. Corrado, L., & Fingleton, B. (2011). Multilevel modelling with spatial effect. Glasgow: University of Strathclyde press.

    Google Scholar 

  26. Cutter, S. L. (1996). Vulnerability to environmental hazards. Progress in Human Geography, 20(4), 529–539.

    Google Scholar 

  27. Cutter, S. L. (2016a). The landscape of disaster resilience indicators in the USA. Natural Hazards, 80(2), 741–758.

    Google Scholar 

  28. Cutter, S. L. (2016b). Resilience to what? Resilience for whom? The Geographical Journal, 182(2), 110–113.

    Google Scholar 

  29. Cutter, S. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 93(1), 1–12.

    Google Scholar 

  30. Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Social vulnerability to environmental hazards. Social Science Quarterly, 84(2), 242–261.

    Google Scholar 

  31. Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of Homeland Security and Emergency Management, 7(1), 1–22.

    Google Scholar 

  32. Cutter, S., & Emrich, C. (2006). Moral hazard, social catastrophe: The changing face of vulnerability along the Hurricane Coasts. The Annals of the American Academy of Political and Social Science, 604(1), 102–112.

    Google Scholar 

  33. Cutter, S., Mitchell, J., & Scott, M. (2000). Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Annals of the Association of American Geographers, 90(4), 713–737.

    Google Scholar 

  34. Darmofal, D. (2015). Spatial analysis for the social sciences. Cambridge: Cambridge University Press.

    Google Scholar 

  35. Dezzani, R. J., & Al-Dousari, A. (2001). Spatial analysis in a Markov random field framework: The case of burning oil wells in Kuwait. Journal of Geographical Systems, 3(4), 387–409.

    Google Scholar 

  36. Dillon, W. R., & Goldstein, M. (1984). Multivariate analysis: methods and applications. New York: Wiley.

    Google Scholar 

  37. Dungan, J. L., Perry, J., Dale, M., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(2), 626–640.

    Google Scholar 

  38. Eakin, H., & Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems. Annual Review of Environment and Resources, 31(1), 365.

    Google Scholar 

  39. Elliott, J. R., & Pais, J. (2006). Race, class, and Hurricane Katrina: Social differences in human responses to disaster. Social Science Research, 35(2), 295–321.

    Google Scholar 

  40. Federal Emergency Management Agency (FEMA). (2011). National disaster recovery frameworkStrengthening disaster recovery for the nation, Washington, DC.

  41. Fekete, A. (2012). Spatial disaster vulnerability and risk assessments: challenges in their quality and acceptance. Natural Hazards, 61(3), 1161–1178.

    Google Scholar 

  42. Fekete, A., Damm, M., & Birkmann, J. (2010). Scales as a challenge for vulnerability assessment. Natural Hazards, 55(3), 729–747.

    Google Scholar 

  43. Fellmann, T. (2012). The assessment of climate change-related vulnerability in the agricultural sector: Reviewing conceptual frameworks. In Meybeck, A., Lankoski, J., Redfern, S., Azzu, A., and Gitz, V. (Eds.), Building resilience for adaptation to climate change in the agriculture sector (pp.37–62). Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012. Food and Agriculture Organization of the United Nations (FAO).

  44. Finch, C., Emrich, C. T., & Cutter, S. L. (2010). Disaster disparities and differential recovery in New Orleans. Population and Environment, 31(4), 179–202.

    Google Scholar 

  45. Finley, A. O. (2011). Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence. Methods in Ecology and Evolution, 2(2), 143–154.

    Google Scholar 

  46. Flanagan, B. E., Gregory, E. W., Hallisey, E. J., et al. (2011). A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management, 8(1), 1–22.

    Google Scholar 

  47. Fothergill, A., Maestas, E. G. M., & Darlington, J. D. (1999). Race, ethnicity, and disasters in the United States: A review of the literature. Disasters, 23, 156.

    Google Scholar 

  48. Fothergill, A., & Peek, L. A. (2004). Poverty and disasters in the United States: A review of recent sociological findings. Natural Hazards, 32(1), 89–110.

    Google Scholar 

  49. Fotheringham, A. S., Brundson, C., & Charlton, M. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Hoboken, NJ: Wiley.

    Google Scholar 

  50. Fotheringham, A. S., & Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: Dispelling the myth. Journal of Geographical Systems, 18(4), 303–329.

    Google Scholar 

  51. Fotheringham, A. S., & Rogerson, P. (2009). The SAGE handbook of spatial analysis. London: Sage Publications.

    Google Scholar 

  52. Frazier, T. G., Thompson, C. M., & Dezzani, R. J. (2013a). Development of a spatially explicit vulnerability-resilience model for community level hazard mitigation enhancement. In C. A. Brebbia (Ed.), Disaster management and human health risk III: Reducing risk, improving outcomes (pp. 13–24). Southampton: WIT Press.

    Google Scholar 

  53. Frazier, T. G., Thompson, C. M., & Dezzani, R. J. (2014). A framework for the development of the SERV model: A spatially explicit resilience-vulnerability model. Applied Geography, 51(3), 158–172.

    Google Scholar 

  54. Frazier, T. G., Walker, M. H., Kumari, A., et al. (2013b). Opportunities and constraints to hazard mitigation planning. Applied Geography, 40(1), 52–60.

    Google Scholar 

  55. Fuchs, S. B. J. G. T. (2012). Vulnerability assessment in natural hazard and risk analysis: Current approaches and future challenges. Natural Hazards, 64(4), 1969–1975.

    Google Scholar 

  56. Füssel, H. M. (2007). Vulnerability: A generally applicable conceptual framework for climate change research. Global Environmental Change, 17(2), 155–167.

    Google Scholar 

  57. Gelman, A. H. J. (2007). Data analysis using regression and multilevel/hierarchical models. Cambridge, NY: Cambridge University Press.

    Google Scholar 

  58. Goldman, M., & Schurman, R. A. (2000). Closing the “Great Divide”: New social theory on society and nature. Annual Review of Sociology, 26(1), 563–584.

    Google Scholar 

  59. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648.

    Google Scholar 

  60. Griffith, D. A. (2003). Spatial autocorrelation and spatial filtering. New York: Springer.

    Google Scholar 

  61. Haining, R. P. (2003). Spatial data analysis: Theory and practice. Cambridge: Cambridge University Press.

    Google Scholar 

  62. Howe, P. D. (2011). Hurricane preparedness as anticipatory adaptation: A case study of community businesses. Global Environmental Change, 21(2), 711–720.

    Google Scholar 

  63. Howitt, R. (2003). Scale. In J. Agnew, K. Mitchell & G. O’Tuathail (Eds.), A companion to political geography (pp. 138–157). Oxford: Blackwell.

  64. Hsu, P. H., & Su, W. R. (2012). Hazard hotspots analysis from geospatial database using geospatial data mining technology. IEEE International Geoscience and Remote Sensing Symposium, 2012, 962–965.

    Google Scholar 

  65. Hufschmidt, G. (2011). A comparative analysis of several vulnerability concepts. Natural Hazards, 58(2), 621–643.

    Google Scholar 

  66. Jankowska, M. M., Weeks, J. R., & Engstrom, R. (2011). Do the most vulnerable people live in the worst slums? A spatial analysis of Accra, Ghana. Annals of GIS, 17(4), 221–235.

    Google Scholar 

  67. Johnston, R. J. (1978). Multivariate statistical analysis in geography. London: Longman.

    Google Scholar 

  68. Jones, B., & Andrey, J. (2007). Vulnerability index construction: Methodological choices and their influence on identifying vulnerable neighbourhoods. International Journal of Emergency Management, 4(2), 269–295.

    Google Scholar 

  69. Keller, E. A., DeVecchio, D. E., & Blodgett, R. H. (2014). Natural hazards: Earth’s processes as hazards, disasters, and catastrophes. Boston: Pearson.

    Google Scholar 

  70. Kim, H., Marcouiller, D. W., & Woosnam, K. M. (2018). Rescaling social dynamics in climate change: The implications of cumulative exposure, climate justice, and community resilience. Geoforum, 96(1), 129–140.

    Google Scholar 

  71. Krellenberg, K., Welz, J., Link, F., et al. (2016). Urban vulnerability and the contribution of socio-environmental fragmentation theoretical and methodological pathways. Progress in Human Geography, 41(4), 408–431.

    Google Scholar 

  72. Lawson, A. B. (2013). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. Boca Raton: Chapman & Hall.

    Google Scholar 

  73. Leitner, H., & Miller, B. (2007). Scale and the limitations of ontological debate: A commentary on Marston, Jones, and Woodward. Transactions of the Institute of British Geographers, 32(1), 116–125.

    Google Scholar 

  74. Lichstein, J. W., Simons, T. R., Shriner, S. A., et al. (2002). Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72(3), 445–463.

    Google Scholar 

  75. Lu, B., Harris, P., Charlton, M., et al. (2013). The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1312.2753.

  76. MacKinnon, D. (2011). Reconstructing scale: Towards a new scalar politics. Progress in Human Geography, 35(1), 21–36.

    Google Scholar 

  77. Marston, S. A., Jones, J. P., & Woodward, K. (2005). Human geography without scale. Transactions of the Institute of British Geographers, 30(4), 416–432.

    Google Scholar 

  78. Martín, Y., Rodrigues Mimbrero, M., & Zúñiga-Antón, M. (2017). Community vulnerability to hazards: Introducing local expert knowledge into the equation. Natural Hazards, 89(1), 367–386.

    Google Scholar 

  79. Mentzafou, A., Markogianni, V., & Dimitriou, E. (2016). The use of geospatial technologies in flood hazard mapping and assessment: Case study from River Evros. Pure and Applied Geophysics, 174(2), 1–22.

    Google Scholar 

  80. Merz, M., Hiete, M., Comes, T., et al. (2013). A composite indicator model to assess natural disaster risks in industry on a spatial level. Journal of Risk Research, 16(9), 1077–1099.

    Google Scholar 

  81. Miller, F., Osbahr, H., Boyd, E., et al. (2010). Resilience and vulnerability: Complementary or conflicting concepts? Ecology and Society, 15(3), 1–25.

    Google Scholar 

  82. Morrow, B. H. (1999). Identifying and mapping community vulnerability. Disasters, 23(1), 1–18.

    Google Scholar 

  83. Morrow, B. (2008). Community resilience: A social justice perspective. TN: CARRI Research Report Oak Ridge.

    Google Scholar 

  84. Mustafa, D., Ahmed, S., Saroch, E., et al. (2011). Pinning down vulnerability: From narratives to numbers. Disasters, 35(5), 62–86.

    Google Scholar 

  85. Nakaya, T., Fotheringham, A., Charlton, M., et al. (2014). Semiparametric geographically weighted generalised linear modelling: The concept and implementation using GWR4. In C. Brunsdon & A. Singleton (Eds.), Geocomputation. A practical primer. London: Sage.

    Google Scholar 

  86. O’Connell, A. A., & McCoach, D. B. (2008). Multilevel modeling of educational data. Charlotte, NC: IAP.

    Google Scholar 

  87. Oliver-Smith, A. (1996). Anthropological research on hazards and disasters. Annual Review of Anthropology, 25(1), 303–328.

    Google Scholar 

  88. Oliver-Smith, A., Cutter, S., Warner, K., et al. (2012). Addressing loss and damage in the context of social vulnerability and resilience. Available at: http://nbn-resolving.de/urn:nbn:de:101:1-201301093162.

  89. Openshaw, S. (1984). The modifiable areal unit problem. Norwich: Geo.

    Google Scholar 

  90. Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. Science, 325(5939), 419–422.

    Google Scholar 

  91. O’Sullivan, D., & Unwin, D. (2010). Geographic information analysis. Available at: http://www.books24x7.com/marc.asp?bookid=35218.

  92. Peacock, W. G., Brody, S. D., Seitz, W. A., et al. (2010). Advancing resilience of coastal localities: Developing, implementing, and sustaining the use of coastal resilience indicators: A final report. Texas: Hazard Reduction and Recovery Center.

    Google Scholar 

  93. Peduzzi, P., Dao, H., Herold, C., et al. (2009). Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index. Natural hazards and earth system sciences, 9(4), 1149–1159.

    Google Scholar 

  94. Poudyal, N. C., Johnson-Gaither, C., Goodrick, S., et al. (2012). Locating spatial variation in the association between wildland fire risk and social vulnerability across six southern states. Environmental Management, 49(3), 623–635.

    Google Scholar 

  95. Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383–398.

    Google Scholar 

  96. Sain, S. R., & Cressie, N. (2007). A spatial model for multivariate lattice data. Journal of Econometrics, 140(1), 226–259.

    Google Scholar 

  97. Sainani, K. L. (2014). Explanatory versus predictive modeling. PM&R, 6(9), 841–844.

    Google Scholar 

  98. Saldaña-Zorrilla, S. O., & Sandberg, K. (2009). Impact of climate-related disasters on human migration in Mexico: A spatial model. Climatic Change, 96(1), 97–118.

    Google Scholar 

  99. Salvati, L., Mancini, A., Bajocco, S., et al. (2011). Socioeconomic development and vulnerability to land degradation in Italy. Regional Environmental Change, 11(4), 767–777.

    Google Scholar 

  100. Sarasota County. (2015). Post-disaster redevelopment plan. Sarasota County, Sarasota. Retrieved from: https://www.scgov.net/Home/ShowDocument?id=34542.

  101. Sarasota County Department of Planning. (2016). Sarasota County comprehensive plan: A planning tool for the future of Sarasota County. Sarasota County: Planning & Development Services.

    Google Scholar 

  102. Schmidtlein, M. C., Deutsch, R. C., Piegorsch, W. W., et al. (2008). A sensitivity analysis of the Social Vulnerability Index. Risk Analysis, 28(4), 1099–1114.

    Google Scholar 

  103. Schwab, A. K., Sandler, D., & Brower, D. J. (2016). Hazard mitigation and preparedness: An introductory text for emergency management and planning professionals. Boca Raton: CRC Press.

    Google Scholar 

  104. Scott, J. (2011). Methods of mapping SLOSH for the HES Program. U.S. Army Corps of Engineers Baltimore District, Baltimore, MA. Presentation at NOAA Operational Storm Surge Inundation Mapping Workshop Resources, Bay St. Louis, MS. Retrieved from: https://www.northerngulfinstitute.org/impact/resources/inundationWorkshop/scott.pdf

  105. Sharifi, A. (2016). A critical review of selected tools for assessing community resilience. Ecological Indicators, 69(1), 629–647.

    Google Scholar 

  106. Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring capacities for community resilience. Social Indicators Research, 99(2), 227–247.

    Google Scholar 

  107. Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.

    Google Scholar 

  108. Subramanian, S. V., Duncan, C., & Jones, K. (2001). Multilevel perspectives on modeling census data. Environment and Planning A, 33(3), 399–417.

    Google Scholar 

  109. Tanner, T., Lewis, D., Wrathall, D., et al. (2014). Livelihood resilience in the face of climate change. Nature Climate Change, 5(1), 23.

    Google Scholar 

  110. Tate, E. (2012). Social vulnerability indices: A comparative assessment using uncertainty and sensitivity analysis. Natural Hazards, 63(2), 325–347.

    Google Scholar 

  111. Tate, E. (2013). Uncertainty analysis for a Social Vulnerability Index. Annals of the Association of American Geographers, 103(3), 526–543.

    Google Scholar 

  112. Thompson, C. M., & Frazier, T. G. (2014). Deterministic and probabilistic flood modeling for contemporary and future coastal and inland precipitation inundation. Applied Geography, 50(1), 1–14.

    Google Scholar 

  113. Tiefelsdorf, M., & Griffith, D. A. (2007). Semiparametric filtering of spatial autocorrelation: The eigenvector approach. Environment and Planning A, 39(5), 1193–1221.

    Google Scholar 

  114. Turner, B. L., Kasperson, R. E., Matson, P. A., et al. (2003). A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8074–8079.

    Google Scholar 

  115. U.S. Census Bureau. (2010). State and county Quickfacts. Sarasota County, FL.

  116. Ueland, J., & Warf, B. (2006). Racialized topographies: Altitude and race in southern cities. Geographical Review, 96(1), 50–78.

    Google Scholar 

  117. Ugarte, M., Ibáñez, B., & Militino, A. (2005). Detection of spatial variation in risk when using CAR models for smoothing relative risks. Stochastic Environmental Research and Risk Assessment, 19(1), 33–40.

    Google Scholar 

  118. United Nations Office for Disaster Risk Reduction (UNISDR). (2017). Words into action guidelines: National disaster risk assessment. Ed. Safaie, S., United Nations Office for Disaster Risk Reduction (UNISDR), Retrieved from: https://www.unisdr.org/we/inform/publications/52828.

  119. Wang, C., & Yarnal, B. (2012). The vulnerability of the elderly to hurricane hazards in Sarasota, Florida. Natural Hazards, 63(2), 349–373.

    Google Scholar 

  120. Wheeler, D. C., & Calder, C. A. (2007). An assessment of coefficient accuracy in linear regression models with spatially varying coefficients. Journal of Geographical Systems, 9(2), 145–166.

    Google Scholar 

  121. Wheeler, D., & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161–187.

    Google Scholar 

  122. White, G. F. (1945). Human adjustment to floods: A geographical approach to the flood problem in the United States. Chicago, IL: University of Chicago.

    Google Scholar 

  123. Wood, N. J., Burton, C. G., & Cutter, S. L. (2010). Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Natural Hazards, 52(2), 369–389.

    Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science Foundation under Grant No. GSS 1434315.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Courtney M. Thompson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thompson, C.M., Dezzani, R.J. & Radil, S.M. Modeling multiscalar influences on natural hazards vulnerability: a proof of concept using coastal hazards in Sarasota County, Florida. GeoJournal 86, 507–528 (2021). https://doi.org/10.1007/s10708-019-10070-w

Download citation

Keywords

  • Hierarchical modeling
  • Natural hazards
  • Spatial statistics
  • Vulnerability