Utilizing GIS linked to AHP for landfill site selection in Rudbar County of Iran

Abstract

As landfill site selection is complicated action and needs attention to various local and non-local conditions such as social, economic, technical and environmental issues; it will require an applicable method, which is able to make proper connection between aforementioned conditions to help engineers in making the most appropriate decision about landfill site. The present study has used a mixture of GIS and multi criteria decision making system in context of the AHP method. So that site selection and prioritization of areas prone to construction of landfill were carried on at 3 stages according to violent morphological and often mountainous (Rudbar County) conditions. At the first stage, after collation of maps based on restriction criteria, improper areas for constructing the landfill were removed. At the second stage, by considering the dominant wind direction and proper area for landfill in a 20-year-old interval, those zones that their areas were more than 35 ha and were not located in the dominant wind direction, were identified as prone areas for constructing the landfill. At the last stage, among the selected areas, they were evaluated and compared by using hierarchical analysis, common standards and experts’ comments. Eventually, the prioritization of prone areas was done based on qualitative classification: excellent, very good, good, average, and weak were different ranks in terms of suitability for constructing landfill. Based on obtained results, 0.41% of understudied regions were classified as weak areas, 0.89% was average, 1.07% was good, 0.70% was very good, and 0.76% was grouped in excellent class.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Abd-El Monsef, H., & Smith, S. E. (2019). Integrating remote sensing, geographic information system, and analytical hierarchy process for hazardous waste landfill site selection. Arabian Journal of Geosciences, 12(155), 1–14. https://doi.org/10.1007/s12517-019-4266-7.

    Article  Google Scholar 

  2. Adeli, Z., & Khorshiddoust, A. (2011). Application of geomorphology in urban planning: Case study in landfill site selection. Procedia—Social and Behavioral Sciences, 19(2011), 662–667. https://doi.org/10.1016/j.sbspro.2011.05.183.

    Article  Google Scholar 

  3. AEPA. (2010). Standards for landfills in Alberta. Alberta Environment Protection Agency. Retrieved from https://www.google.com/url?sa=t%26rct=j%26q=%26esrc=s%26source=web%26cd=10%26ved=2ahUKEwil69eLlvjjAhUDNOwKHSVfBTAQFjAJegQIAhAC%26url=http%3A%2F%2Faep.alberta.ca%2Fwaste%2Fwastefacilities%2Fdocuments%2FStandardsLandfillsAlberta-Feb2010.pdf%26usg=AOvVaw1E_zZCsAD38hDyzt3VpwSH. Accessed 26 May 2019.

  4. Arabameri, A. R., & Ramesht, M. H. (2017). Site selection of landfill with emphasis on hydrogeomorphological—Environmental parameters Shahrood-Bastam watershed. Journal of Applied researches in Geographical Sciences, 16(43), 55–80.

    Google Scholar 

  5. Baban, S. M. J., & Flannagan, J. (1998). Developing and implementing GIS-assisted constraints criteria for planning landfill sites in the UK. Planning Practice and Research, 13(2), 139–151. https://doi.org/10.1080/02697459816157.

    Article  Google Scholar 

  6. BCME. (2016). Landfill criteria for municipal solid waste. 2nd Edn. (p. 76). British Colombia Ministry of Environment, Brithish Colombia. Retrieved from http://www2.gov.bc.ca/assets/gov/environment/waste-management/garbage/landfill_criteria.pdf. Accessed 26 May 2019.

  7. Cao, L.-W., Cheng, Y.-H., Zhang, J., Zhou, X.-Z., & Lian, C.-X. (2006). Application of grey situation decision-making theory in site selection of a waste sanitary landfill. Journal of China University of Mining and Technology, 16(4), 393–398. https://doi.org/10.1016/S1006-1266(07)60033-9.

    Article  Google Scholar 

  8. DeFeo, G. D., & DeGisi, S. D. (2014). Using MCDA and GIS for hazardous waste landfill siting considering land scarcity for waste disposal. Waste Management, 34(11), 2225–2238. https://doi.org/10.1016/j.wasman.2014.05.028.

    Article  Google Scholar 

  9. Delgado, O. B., Mendoza, M., Granados, E. L., & Geneletti, D. (2008). Analysis of land suitability for the siting of inter-municipal landfills in the Cuitzeo Lake Basin, Mexico. Waste Management, 28(7), 1137–1146. https://doi.org/10.1016/j.wasman.2007.07.002.

    Article  Google Scholar 

  10. Dent, B. D. (1999). Cartography: Thematic map design. WCB/McGraw-Hill. https://books.google.com/books?id=Qn4YAQAAMAAJ. Accessed 26 May 2019.

  11. Donevska, K. R., Gorsevski, P. V., Jovanovski, M., & Peševski, I. (2012). Regional non-hazardous landfill site selection by integrating fuzzy logic, AHP and geographic information systems. Environmental Earth Sciences, 67(1), 121–131. https://doi.org/10.1007/s12665-011-1485-y.

    Article  Google Scholar 

  12. Fazelnejad, N., Mirzaei, R., & Heidari, R. (2017). Application of Electre model in locating of municipal solid waste landfill (case study: the city of Khorramabad). Journal of Research in Environmental Health, 3(1), 56–66. https://doi.org/10.22038/jreh.2017.22005.1130.

    Article  Google Scholar 

  13. Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S. (2013). Modelling landfill location using geographic information systems (GIS) and multi-criteria decision analysis (MCDA): Case study Bo, Southern Sierra Leone. Applied Geography, 36(2013), 3–12. https://doi.org/10.1016/j.apgeog.2012.06.013.

    Article  Google Scholar 

  14. Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Management, 32(2), 287–296. https://doi.org/10.1016/j.wasman.2011.09.023.

    Article  Google Scholar 

  15. IEPA. (2010). Environmental regulations for landfill sites. Iran Environmental Protection Agency. Retrieved from https://eform.doe.ir/Portal/home/?generaltext/176324/176328/%D9%85%D8%AA%D9%88%D9%86-%D8%B9%D9%85%D9%88%D9%85%DB%8C. Accessed 26 May 2019.

  16. IRIMO. (2017). Fastes wind direction and speed in knot, form 37. I.R of IRAN Meteorological Organization. Retrieved from http://www.chaharmahalmet.ir/stat/archive/iran/gil/MANJIL/37.asp. Accessed 26 May 2019.

  17. Jafari, M., & Jafari, A. (2016). Locating an appropriate landfill for rural wastes using the AHP model and GIS software (case study: Mahneshan town). Journal of Research in Environmental Health, 2(3), 245–254. https://doi.org/10.22038/jreh.2016.8080.

    Article  Google Scholar 

  18. Jaramillo, J. (2003). Guidelines for the design, construction and operation of manual sanitary landfills. Lima, Peru. Retrieved from https://www.google.com/url?sa=t%26rct=j&q=%26esrc=s&source=web%26cd=2%26ved=2ahUKEwjTkPCjmPjjAhWMzaQKHZ62CE8QFjABegQIAxAC%26url=http%3A%2F%2Fwww.bvsde.paho.org%2Fcdromrepi86%2Ffulltexts%2Fbvsars%2Ffulltext%2Fguideliness.pdf%26usg=AOvVaw07ND5NoGHDdFtli7v0VbGd. Accessed 26 May 2019.

  19. Jesse, L., Cristiane, L., & Johnson, M. A. (2016). Wind and rain rose plots for meteorological data. Retrieved from https://www.weblakes.com/products/Wrplot/resources/lakes_wrplot_view_user_guide.pdf. Accessed 26 May 2019.

  20. Kao, J. J., & Lin, H. Y. (1996). Multifactor spatial analysis for landfill siting. Journal of Environmental Engineering, 122(10), 902–908. https://doi.org/10.1061/(ASCE)0733-9372(1996)122:10(902).

    Article  Google Scholar 

  21. Keller, E. A. (1999). Introduction to environmental geology. New Jersey: Prentice-Hall.

    Google Scholar 

  22. Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment, 2(2), 53. https://doi.org/10.1007/s40808-016-0106-x.

    Article  Google Scholar 

  23. Klosterman, R. E., Brail, R. K., & Bossard, E. G. (1993). Spreadsheet models for urban and regional analysis. Center for Urban Policy Research New Brunswick, NJ. Retrieved from https://www.amazon.com/Spreadsheet-Models-Urban-Regional-Analysis/dp/088285142X. Accessed 26 May 2019.

  24. Kontos, T. D., Komilis, D. P., & Halvadakis, C. P. (2005). Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Management, 25(8), 818–832. https://doi.org/10.1016/j.wasman.2005.04.002.

    Article  Google Scholar 

  25. Krizek, K. J., & Power, J. (1996). A planners guide to sustainable development. Chicago, IL USA. Retrieved from https://trid.trb.org/view.aspx?id=759341. Accessed 26 May 2019.

  26. Mahamid, I., & Thawaba, S. (2010). Multi criteria and landfill site selection using Gis: A case study from Palestine. The Open Environmental Engineering Journal, 3(1), 33–41. https://doi.org/10.2174/1874829501003010033.

    Article  Google Scholar 

  27. Marinoni, O., & Hoppe, A. (2006). Using the analytical hierarchy process to support sustainable use of geo-resources in metropolitan areas. Journal of Systems Science and Systems Engineering, 15(2), 154–164. https://doi.org/10.1007/s11518-006-5004-8.

    Article  Google Scholar 

  28. McMaster, R. (1997). In Memoriam: George F. Jenks (1916–1996). Cartography and Geographic Information Systems, 24(1), 56–59. https://doi.org/10.1559/152304097782438764.

    Article  Google Scholar 

  29. Moghimi Kandlousy, A., Mohebbi Tafreshi, A., & Mohebbi Tafreshi, G. (2018). Locating appropriate areas of municipal waste landfill using TOPSIS method (case study: Langroud county). Journal of Research in Environmental Health, 4(2), 112–128. https://doi.org/10.22038/jreh.2018.31509.1213.

    Article  Google Scholar 

  30. Mohebbi Tafreshi, A., Kheirkhah Zarkesh, M. M., & Mohebbi Tafreshi, G. (2014). Using integration GIS and remote sensing techniques by decision support system to locate suitable areas construction of underground dam (the case study of Qazvin province). Iranian Journal of Watershed Management Science and Engineering, 8(26), 35–50.

    Google Scholar 

  31. Mohebbi Tafreshi, A., & Mohebbi Tafreshi, G. (2017). Qualitative zoning of groundwater for drinking purposes in Lenjan plain using GQI method through GIS. Environmental Health Engineering and Management Journal, 4(4), 209–215. https://doi.org/10.15171/ehem.2017.29.

    Article  Google Scholar 

  32. Mohebbi Tafreshi, A., Mohebbi Tafreshi, G., & Bijeh Keshavarzi, M. H. (2018). Qualitative zoning of groundwater to assessment suitable drinking water using fuzzy logic spatial modelling via GIS. Water and Environment Journal, 32(4), 607–620. https://doi.org/10.1111/wej.12358.

    Article  Google Scholar 

  33. Mohebbi Tafreshi, A., Rezaei, M., & Mohebbi Tafreshi, G. (2016). A Hydrogeochemical study of golpayegan plain based on the examination of ionic ratios and environmental factors controlling the chemical composition of ground water. Journal of Environmental Studies, 42(1), 49–63. https://doi.org/10.22059/jes.2016.58096.

    Article  Google Scholar 

  34. Mokhtari, M., Hosseini, F., Babaee, A., & Mirhoseini, S. (2015). Application of AHP and TOPSIS models for site selection of municipal solid waste landfill (case study: Lali City). Tolooebehdasht, 14(4), 143–153.

    Google Scholar 

  35. Motlagh, Z., & Sayadi, M. H. (2015). Siting MSW landfills using MCE methodology in GIS environment (case study: Birjand plain, Iran). Waste Management, 46, 322–337. https://doi.org/10.1016/j.wasman.2015.08.013.

    Article  Google Scholar 

  36. MPCA. (2005). Demolition landfill guidance (pp. 1–13). Minnesota Pollution Control Agency. Water/Solid Waste #5.04. Retrieved from https://www.pca.state.mn.us/sites/default/files/w-sw5-04.pdf. Accessed 26 May 2019.

  37. Mutluturk, M., & Karaguzel, R. (2007). The landfill area quality (LAQ) classification approach and its application in Isparta, Turkey. Environmental and Engineering Geoscience, 13(3), 229–240. https://doi.org/10.2113/gseegeosci.13.3.229.

    Article  Google Scholar 

  38. Nas, B., Cay, T., Iscan, F., & Berktay, A. (2010). Selection of MSW landfill site for Konya, Turkey using GIS and multi-criteria evaluation. Environmental Monitoring and Assessment, 160, 491–500. https://doi.org/10.1007/s10661-008-0713-8.

    Article  Google Scholar 

  39. Normandipour, N., & AbbasNejad, A. (2015). Landfill site selection of Shahr-e-Babak using fuzzy and boolean logics and geographic information system. Journal of Urban Areas Studies, 2(1), 133–154. https://doi.org/10.22103/juas.2015.1794.

    Article  Google Scholar 

  40. Ojha, C. S. P., Goyal, M. K., & Kumar, S. (2007). Applying fuzzy logic and the point count system to select landfill sites. Environmental Monitoring and Assessment, 135(1), 99–106. https://doi.org/10.1007/s10661-007-9713-3.

    Article  Google Scholar 

  41. Promentilla, M. A. B., Furuichi, T., Ishii, K., & Tanikawa, N. (2006). Evaluation of remedial countermeasures using the analytic network process. Waste Management, 26(12), 1410–1421. https://doi.org/10.1016/j.wasman.2005.11.020.

    Article  Google Scholar 

  42. Saari, D. G., & Merlin, V. R. (1996). The Copeland method. Economic Theory, 8(1), 51–76. https://doi.org/10.1007/bf01212012.

    Article  Google Scholar 

  43. Saaty, T. L. (1980). The analytical hierarchy process. New York: McGraw Hill.

    Google Scholar 

  44. SCI. (2019). Population of the country in terms of gender in urban and rural areas. Statistical Center of Iran. Retrieved from https://www.amar.org.ir/english. Accessed 26 May 2019.

  45. Şener, Ş., Şener, E., Nas, B., & Karagüzel, R. (2010). Combining AHP with GIS for landfill site selection: A case study in the Lake Beyşehir catchment area (Konya, Turkey). Waste Management, 30(11), 2037–2046. https://doi.org/10.1016/j.wasman.2010.05.024.

    Article  Google Scholar 

  46. Şener, B., Süzen, M. L., & Doyuran, V. (2006). Landfill site selection by using geographic information systems. Environmental Geology, 49(3), 376–388. https://doi.org/10.1007/s00254-005-0075-2.

    Article  Google Scholar 

  47. Sepehr, A., Biglarfadafan, M., & Safarabadi, A. (2014). Prioritizing suitable locations to domestic waste disposal considering geomorphic criteria. Geography and Development Iranian Journal, 12(34), 139–152. https://doi.org/10.22111/gdij.2014.1438.

    Article  Google Scholar 

  48. Strategy. (2010). Serbian national waste management strategy for the period 2010–2019. Serbian Government, Official Gazette No 29, Belgrade, Serbia. Retrieved from https://www.google.com/url?sa=t%26rct=j%26q=%26esrc=s%26source=web%26cd=16%26cad=rja%26uact=8%26ved=2ahUKEwiQPHvm_jjAhXEsaQKHecxALoQFjAPegQIBBAC%26url=http%3A%2F%2Fwww.environment.go.ke%2Fwp-content%2Fuploads%2F2019%2F01%2FEWASTE-MANAGEMENT-STRATEGY-final-draft-Jan-2019-1.pdf%26usg=AOvVaw1vhoTp87ahDc-EXaKKgdBj. Accessed 26 Jan 2019.

  49. Taghvaei, M., Momeni, M., & Zarei, R. (2012). Application of analytical hierarchical process in locating waste landfill (Marvdasht city). Journal of Geography and Environmental Studies, 1(4), 19–29.

    Google Scholar 

  50. Vatalis, K., & Manoliadis, O. (2002). A two-level multi-criteria DSS for landfill site selection using GIS: Case study in Western Macedonia, Greece. Journal of Geographic Information and Decision Analysis, 6(1), 49–56.

    Google Scholar 

  51. Veronesi, F., Schito, J., Grassi, S., & Raubal, M. (2017). Automatic selection of weights for GIS-based multicriteria decision analysis: Site selection of transmission towers as a case study. Applied Geography, 83, 78–85. https://doi.org/10.1016/j.apgeog.2017.04.001.

    Article  Google Scholar 

  52. Wang, G., Qin, L., Li, G., & Chen, L. (2009). Landfill site selection using spatial information technologies and AHP: A case study in Beijing, China. Journal of Environmental Management, 90(8), 2414–2421. https://doi.org/10.1016/j.jenvman.2008.12.008.

    Article  Google Scholar 

  53. Zelenović Vasiljević, T., Srdjević, Z., Bajčetić, R., & Vojinović Miloradov, M. (2012). GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: A Case study from Serbia. Environmental Management, 49(2), 445–458. https://doi.org/10.1007/s00267-011-9792-3.

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Islamic Azad University (IAU) at Lahijan Branch for providing the necessary facilities to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Manoochehr Mortazavi Chamchali.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Ethical standards

It is confirmed that this manuscript is an original work of the authors and has not been published or under review in another refereed journal, and is not published anywhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mortazavi Chamchali, M., Mohebbi Tafreshi, A. & Mohebbi Tafreshi, G. Utilizing GIS linked to AHP for landfill site selection in Rudbar County of Iran. GeoJournal 86, 163–183 (2021). https://doi.org/10.1007/s10708-019-10064-8

Download citation

Keywords

  • Decision making
  • Geographic information systems (GIS)
  • Landfill
  • Rudbar
  • Waste disposal facilities