Advertisement

GeoJournal

, Volume 83, Issue 2, pp 347–364 | Cite as

Pedestrian network repair with spatial optimization models and geocrowdsourced data

  • Han Qin
  • Kevin M. Curtin
  • Matthew T. Rice
Article
  • 166 Downloads

Abstract

Pedestrian infrastructure is an essential part of the urban fabric. Typically, it is carefully planned and maintained by governments and local experts, who recognize the benefits to health, well-being, and even economics associated with a walkable environment. Pedestrian walkway characteristics, including running slope, cross slope, curb cuts, cross walks, sidewalk widths, and signalization are a part of the comprehensive design elements used by most municipalities. However, barriers or obstacles, including temporary obstructions, construction detours, and surface irregularities make this infrastructure difficult for individuals with a mobility impairment or vision impairment to use. Crowdsourcing can assist these individuals by providing information about transient and permanent navigation obstacles, through an accessibility mapping system. Accessibility mapping systems, several examples of which are discussed in this paper, provide routing functions to make navigation easier for individuals with a mobility impairment or vision impairment. A geocrowdsourced accessibility system can also identify deficiencies in a pedestrian network dynamically, and can provision routing and obstacle avoidance functions in real-time, with data about transient events provided by the public. This paper is based upon previous geocrowdsourced data quality studies, and presents a modeling methodology to identify high-value routing corridors in a dynamic geocrowdsourced accessibility system. The corridor measurement can help civic employees from city public works and transportation departments prioritize maintenance of a pedestrian infrastructure, including the rectification of obstacles identified through crowdsourcing. In this paper, we augment geocrowdsourcing data quality metrics with input from subject matter experts trained in orientation and mobility services, and discuss the accessibility elements that could directly influence the usability of the pedestrian infrastructure. We also present a cost optimization model to measure the value of a pedestrian network segment. Lastly, this paper analyzes how the value of a network segment in a geocrowdsourced accessibility system changes with network conditions and how this relates to prioritization of maintenance tasks through optimization criteria.

Keywords

Volunteered geographic information Crowdsourcing Optimization Pedestrian networks 

References

  1. Aburizaiza, A. O., & Rice, M. T. (2016). Geospatial footprint library of geoparsed text from crowdsourcing. Spatial Information Research, 24(4), 409–420.CrossRefGoogle Scholar
  2. Avila, K. (2014). The experiences of pedestrians with visual impairments in a metropolitan setting: An ethnographic inquiry. In Proceedings of the biannual international conference of the association for education and rehabilitation for the blind and visually impaired. Presented at the biannual international conference of the association for education and rehabilitation for the blind and visually impaired, San Antonio, TX.Google Scholar
  3. Barbeau, S. J., Winters, P. L., Georggi, N. L., Labrador, M. A., & Perez, R. (2010). Travel assistance device: Utilising global positioning system-enabled mobile phones to aid transit riders with special needs. Intelligent Transport Systems, 4(1), 12–23.CrossRefGoogle Scholar
  4. Beale, L., Field, K., Briggs, D., Picton, P., & Matthews, H. (2006). Mapping for wheelchair users: Route navigation in urban spaces. The Cartographic Journal, 43(1), 68–81.CrossRefGoogle Scholar
  5. Chen, M., Lin, H., Liu, D., Zhang, H., & Yue, S. (2015). An object-oriented data model built for blind navigation in outdoor space. Applied Geography, 60, 84–94. doi: 10.1016/j.apgeog.2015.03.004 CrossRefGoogle Scholar
  6. Dixon, L. (1996). Bicycle and pedestrian level-of-service performance measures and standards for congestion management systems. Transportation Research Record: Journal of the Transportation Research Board, 1538, 1–9. doi: 10.3141/1538-01 CrossRefGoogle Scholar
  7. Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590. doi: 10.1080/00045608.2011.595657.CrossRefGoogle Scholar
  8. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  9. Goodchild, M. F. (2009) Neogeography and the nature of geographic expertise. Journal of Location Based Services, Special issue on Neogeography, 3(2), 82–96.Google Scholar
  10. Goodchild, F. M., Kryiakidis, P., Rice, M., & Schneider, P. (2005). Spatial web. In Report of the NCGIA specialist meeting on spatial webs (pp. 73–78).Google Scholar
  11. Howe, J. (2006). The rise of crowdsourcing. Wired Magazine, 14(6), 1–4.Google Scholar
  12. Jacobson, R. Dan. (1998). Cognitive mapping without sight: Four preliminary studies of spatial learning. Journal of Environmental Psychology, 18(3), 289–305.CrossRefGoogle Scholar
  13. Karimi, H. A., & Kasemsuppakorn, P. (2013). Pedestrian network map generation approaches and recommendation. International Journal of Geographical Information Science, 27(5), 947–962.CrossRefGoogle Scholar
  14. Karimi, H. A., Zhang, L., & Benner, J. G. (2014). Personalized accessibility map (PAM): A novel assisted wayfinding approach for people with disabilities. Annals of GIS, 20(2), 99–108. doi: 10.1080/19475683.2014.904438.CrossRefGoogle Scholar
  15. Keirstead, J., & Shah, N. (2013). The changing role of optimization in urban planning. In Optimization, simulation, and control (pp. 175–193). New York: Springer.Google Scholar
  16. Kockelman, K., Heard, L., Kweon, Y. J., & Rioux, T. (2002). Sidewalk cross-slope design: Analysis of accessibility for persons with disabilities. Transportation Research Record: Journal of the Transportation Research Board, 1818, Paper No. 02-2471, 108–118. doi: 10.3141/1818-17
  17. Kockelman, K., Zhao, Y., & Blanchard-Zimmerman, C. (2001). Meeting the intent of ADA in sidewalk cross-slope design. Journal of Rehabilitation Research and Development, 38(1), 101.Google Scholar
  18. Laakso, M., Sarjakoski, T., Lehto, L., & Sarjakoski, L. T. (2013). An information model for pedestrian routing and navigation databases supporting universal accessibility. Cartographica: The International Journal for Geographic Information and Geovisualization, 48(2), 89–99.CrossRefGoogle Scholar
  19. Laakso, M., Sarjakoski, T., & Sarjakoski, L. T. (2011). Improving accessibility information in pedestrian maps and databases. Cartographica: The International Journal for Geographic Information and Geovisualization, 46(2), 101–108.CrossRefGoogle Scholar
  20. Leinberger, C., & Alfonzo, M. (2012). Walk this way: The economic promise of walkable places in metropolitan. Washington, DC: The Brookings Institution.Google Scholar
  21. Loomis, J. M., Golledge, R. G., & Klatzky, R. L. (2001). GPS-based navigation systems for the visually impaired. In W. Barfield & T. Caudell (Eds.), Fundamentals of wearable computers and augmented reality (pp. 429–446). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  22. Miele, J. A., Landau, S., & Gilden, D. B. (2006). Talking TMAP: Automated generation of audio-tactile maps using Smith–Kettlewell’s TMAP Software. The British Journal of Visual Impairment, 24(2), 93–100.CrossRefGoogle Scholar
  23. Nuernberger, A. (2008). Presenting accessibility to mobility-impaired travelers (UCTC Dissertation). Santa Barbara, CA: University of California Transportation Center.Google Scholar
  24. Perkins, C. (2002). Cartography: Progress in tactile mapping. Progress in Human Geography, 26(4), 521–530.CrossRefGoogle Scholar
  25. Qin, H., Aburizaiza, A. O., Rice, R. M., Paez, F., & Rice, M. T. (2015a). Obstacle characterization in a Geocrowdsourced accessibility system. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 179–185.CrossRefGoogle Scholar
  26. Qin, H., Rice, R. M., Fuhrmann, S., Rice, M. T., Curtin, K. M., & Ong, E. (2015b). Geocrowdsourcing and accessibility for dynamic environments. GeoJournal, 81(5), 699–716. doi: 10.1007/s10708-015-9659-x CrossRefGoogle Scholar
  27. Rice, M. T., Aburizaiza, A. O., Jacobson, R. D., Shore, B. M., & Paez, F. I. (2012a). Supporting accessibility for blind and vision-impaired people with a localized gazetteer and open source geotechnology. Transactions in GIS, 16(2), 177–190. doi: 10.1111/j.1467-9671.2012.01318.x.CrossRefGoogle Scholar
  28. Rice, R. M., Aburizaiza, A. O., Rice, M. T., & Qin, H. (2016). Position validation in crowdsourced accessibility mapping. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(2), 55–66.CrossRefGoogle Scholar
  29. Rice, M. T., Curtin, K. M., Paez, F. I., Seitz, C. R., & Qin, H. (2013a). Crowdsourcing to support navigation for the disabled: A report on the motivations, design, creation and assessment of a Testbed environment for accessibility. US Army Corps of Engineers, Engineer Research and Development Center, US Army Topographic Engineering Center Technical Report, Data Level Enterprise Tools Workgroup No. BAA: #AA10-4733, Contract: # W9132 V-11-P-0011 (pp. 1–62). Fairfax, VA: George Mason University. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA588474
  30. Rice, M. T., Curtin, K. M., Pfoser, D., Rice, R. M., Fuhrmann, S., Qin, H.et al. (2015). Social moderation and dynamic elements in crowdsourced geospatial data: A report on quality assessment, dynamic extensions and mobile device engagement in the George Mason University Geocrowdsourcing Testbed. Technical Report No. AD1001943 (pp. 1–126). Fairfax, VA: George Mason University Fairfax United States. Retrieved from http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=AD1001943.
  31. Rice, M. T., Hammill, W. C., Aburizaiza, A. O., Schwarz, S., & Jacobson, R. D. (2011). Integrating user-contributed geospatial data with assistive geotechnology using a localized gazetteer. In A. Ruas (Ed.), Advances in cartography and GIScience, Vol. 1 (pp. 279–291). Berlin: Springer. doi: 10.1007/978-3-642-19143-5_16
  32. Rice, M. T., Jacobson, R. D., Caldwell, D. R., McDermott, S. D., Paez, F. I., et al. (2013b). Crowdsourcing techniques for augmenting traditional accessibility maps with transitory obstacle information. Cartography and Geographic Information Science, 40(3), 210–219. doi: 10.1080/15230406.2013.799737.CrossRefGoogle Scholar
  33. Rice, M. T., Paez, F. I., Mulhollen, A. P., Shore, B. M., & Caldwell, D. R. (2012b). Crowdsourced geospatial data: A report on the emerging phenomena of crowdsourced and user-generated geospatial data (US Army Corps of Engineers, Engineer Research and Development Center, US Army Topographic Engineering Center Technical Report, Data Level Enterprise Tools Workgroup No. BAA: #AA10-4733, Contract: # W9132 V-11-P-0011). Fairfax, VA: George Mason University. Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a576607.pdf
  34. Rice, M. T., Paez, F. I., Rice, R. M., Ong, E. W., Qin, H. et al. (2014). Quality assessment and accessibility applications of crowdsourced geospatial data: A report on the development and extension of the George Mason University Geocrowdsourcing Testbed. Annual No. BAA: #AA10-4733, Contract: # W9132 V-11-P-0011 (p. 91). Fairfax, VA: George Mason University.Google Scholar
  35. Rodgers, R. E. (2015). A statistical comparison of sidewalk slopes derived from multi-resolution digital elevation models in support of accessibility. Doctoral dissertation, George Mason University.Google Scholar
  36. Russ, T. H. (2009). Site planning and design handbook. New York: McGraw-Hill.Google Scholar
  37. Steiner, F. R., Butler, K., & Association, A. P. (2012). Planning and urban design standards. New York: Wiley.Google Scholar
  38. Sui, D., Elwood, S., & Goodchild, M. F. (Eds.). (2013). Crowdsourcing geographic knowledge volunteered geographic information (VGI) in theory and practice. New York: Springer.Google Scholar
  39. Thatcher, J., Waddell, C., & Burks, M. (2002). Constructing accessible web sites (Vol. 34). Birmingham: Glasshaus.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Geography and Geoinformation ScienceGeorge Mason UniversityFairfaxUSA
  2. 2.Center for Location ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations