GeoJournal

, Volume 83, Issue 2, pp 399–412 | Cite as

Tracing environmental narratives: a web-based tool for the analysis and visualization of georeferenced narratives

Article
  • 79 Downloads

Abstract

A growing number of studies have used standalone GPS or smartphones to track where people move and the environment to which they expose. In the same time, questionnaire, survey, and travel diaries have been used to capture people’s perception, emotions, and interactions with the nearby environment. The growing volume of qualitative data together with locational information calls for new ways to conveniently, intuitively, and visually convey georeferenced narratives. In this study, we developed a web-based tool that automatically processes GPS trajectories and narratives, displays information regarding travel routes and georeferenced environmental perception. Our georeferenced word-cloud approach provides an innovative way to visualize qualitative information. The developed platform can be widely used in community engagement and participatory planning processes to empower the local communities.

Keywords

Georeferenced narratives Travel trajectories Geographic visualization Environmental perception 

References

  1. Axhausen, K. W., & Gärling, T. (1992). Activity-based approaches to travel analysis: Conceptual frameworks, models, and research problems. Transport Reviews, 12(4), 323–341.CrossRefGoogle Scholar
  2. Bazeley, P., & Richards, L. (2000). The NVivo qualitative project book. Sage.Google Scholar
  3. Boschmann, E. E., & Cubbon, E. (2014). Sketch maps and qualitative GIS: Using cartographies of individual spatial narratives in geographic research. The Professional Geographer, 66(2), 236–248.CrossRefGoogle Scholar
  4. Clandinin, D. J. (2006). Handbook of narrative inquiry: Mapping a methodology. Thousand Oaks: Sage Publications.Google Scholar
  5. Cooper, A. R., Page, A. S., Wheeler, B. W., Hillsdon, M., Griew, P., & Jago, R. (2010). Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. International Journal of Behavioral Nutrition and Physical Activity, 7(1), 1.CrossRefGoogle Scholar
  6. Cope, M. (2009). Introduction: qualitative GIS: forging mixed methods through representations, analytical innovations, and conceptual engagements. In M. Cope & S Elwood (Eds.), Qualitative GIS: A mixed methods approach. Qualitative GIS: A mixed methods approach. from English (pp. 1–12). London: SAGE Publications Ltd.Google Scholar
  7. Cummins, S., Curtis, S., Diez-Roux, A. V., & Macintyre, S. (2007). Understanding and representing ‘place’in health research: A relational approach. Social Science and Medicine, 65(9), 1825–1838.CrossRefGoogle Scholar
  8. Curtis, A., Blackburn, J. K., Widmer, J. M., & Morris, J. G., Jr. (2013). A ubiquitous method for street scale spatial data collection and analysis in challenging urban environments: mapping health risks using spatial video in Haiti. International Journal of Health Geographics, 12(1), 1.CrossRefGoogle Scholar
  9. Duncan, M. J., Badland, H. M., & Mummery, W. K. (2009). Applying GPS to enhance understanding of transport-related physical activity. Journal of Science and Medicine in Sport, 12(5), 549–556.CrossRefGoogle Scholar
  10. Dunkel, A. (2015). Visualizing the perceived environment using crowdsourced photo geodata. Landscape and urban planning, 142, 173–186.CrossRefGoogle Scholar
  11. Elwood, S. (2006). Critical issues in participatory GIS: Deconstructions, reconstructions, and new research directions. Transactions in GIS, 10(5), 693–708.CrossRefGoogle Scholar
  12. Fjørtoft, I., Kristoffersen, B., & Sageie, J. (2009). Children in schoolyards: Tracking movement patterns and physical activity in schoolyards using global positioning system and heart rate monitoring. Landscape and urban planning, 93(3), 210–217.CrossRefGoogle Scholar
  13. Gahegan, M. (1995). Proximity operators for qualitative spatial reasoning. Paper presented at the international conference on spatial information theory.Google Scholar
  14. Gibbs, G. R. (2002). Qualitative data analysis: Explorations with NVivo. Open University.Google Scholar
  15. Goodchild, M. F. (2000). GIS and transportation: Status and challenges. GeoInformatica, 4(2), 127–139.CrossRefGoogle Scholar
  16. Goodchild, M. F., & Glennon, J. A. (2010). Crowdsourcing geographic information for disaster response: A research frontier. International Journal of Digital Earth, 3(3), 231–241.CrossRefGoogle Scholar
  17. Goodchild, M. F., & Janelle, D. G. (Eds.). (2004). Spatially integrated social science. Oxford University Press (pp. 48–66).Google Scholar
  18. Hägerstraand, T. (1970). What about people in regional science? Papers in regional science, 24(1), 7–24.CrossRefGoogle Scholar
  19. Harris, T., & Weiner, D. (1998). Empowerment, marginalization, and “community-integrated” GIS. Cartography and Geographic Information Systems, 25(2), 67–76.CrossRefGoogle Scholar
  20. Harris, T., & Weiner, D. (2002). Implementing a community-integrated GIS: Perspectives from South African fieldwork. In T. M. Harris, W. J. Craig, & D. Weiner (Eds.), Community participation and geographic information systems (pp. 246–258). doi: 10.1201/9780203469484.ch18.
  21. Hawthorne, T., Krygier, J., & Kwan, M.-P. (2008). Mapping ambivalence: Exploring the geographies of community change and rails-to-trails development using photo-based Q method and PPGIS. Geoforum, 39(2), 1058–1078.CrossRefGoogle Scholar
  22. Hawthorne, T. L., Solís, P., Terry, B., Price, M., & Atchison, C. L. (2015). Critical reflection mapping as a hybrid methodology for examining sociospatial perceptions of new research sites. Annals of the Association of American Geographers, 105(1), 22–47.CrossRefGoogle Scholar
  23. Jones, P., & Evans, J. (2012). The spatial transcript: Analysing mobilities through qualitative GIS. Area, 44(1), 92–99.CrossRefGoogle Scholar
  24. Jung, J. K., & Elwood, S. (2010). Extending the qualitative capabilities of GIS: Computer-aided qualitative GIS. Transactions in GIS, 14(1), 63–87.CrossRefGoogle Scholar
  25. Keddem, S., Barg, F. K., Glanz, K., Jackson, T., Green, S., & George, M. (2015). Mapping the urban asthma experience: Using qualitative GIS to understand contextual factors affecting asthma control. Social Science and Medicine, 140, 9–17.CrossRefGoogle Scholar
  26. Kim, H.-M., & Kwan, M.-P. (2003). Space-time accessibility measures: A geocomputational algorithm with a focus on the feasible opportunity set and possible activity duration. Journal of Geographical Systems, 5(1), 71–91.CrossRefGoogle Scholar
  27. Knigge, L., & Cope, M. (2006). Grounded visualization: Integrating the analysis of qualitative and quantitative data through grounded theory and visualization. Environment and Planning A, 38(11), 2021–2037.CrossRefGoogle Scholar
  28. Kwan, M.-P. (2000). Analysis of human spatial behavior in a GIS environment: Recent developments and future prospects. Journal of Geographical Systems, 2(1), 85–90.CrossRefGoogle Scholar
  29. Kwan, M.-P. (2013). Beyond space (as we knew it): Toward temporally integrated geographies of segregation, health, and accessibility: Space–time integration in geography and GIScience. Annals of the Association of American Geographers, 103(5), 1078–1086.CrossRefGoogle Scholar
  30. Kwan, M.-P., & Ding, G. (2008). Geo-narrative: Extending geographic information systems for narrative analysis in qualitative and mixed-method research∗. The Professional Geographer, 60(4), 443–465.CrossRefGoogle Scholar
  31. Li, D., & Zhou, X. (2017). Featured graphics: “Leave your footprints in my words”—a georeferenced word-cloud approach. Environment and Planning A, 49(3), 489–492.CrossRefGoogle Scholar
  32. Matthews, S. A., Detwiler, J. E., & Burton, L. M. (2005). Geo-ethnography: Coupling geographic information analysis techniques with ethnographic methods in urban research. Cartographica: The International Journal for Geographic Information and Geovisualization, 40(4), 75–90.CrossRefGoogle Scholar
  33. Mennis, J., Mason, M. J., & Cao, Y. (2013). Qualitative GIS and the visualization of narrative activity space data. International Journal of Geographical Information Science, 27(2), 267–291.CrossRefGoogle Scholar
  34. Miller, H. J. (1991). Modelling accessibility using space-time prism concepts within geographical information systems. International Journal of Geographical Information System, 5(3), 287–301.CrossRefGoogle Scholar
  35. Miller, H. J., & Bridwell, S. A. (2009). A field-based theory for time geography. Annals of the Association of American Geographers, 99(1), 49–75.CrossRefGoogle Scholar
  36. Parks, L. (2001). Cultural geographies in practice: Plotting the personal: Global Positioning Satellites and interactive media. Ecumene, 8(2), 209–222.Google Scholar
  37. Riloff, E & Wiebe, J. (2003). Learning extraction patterns for subjective expressions. EMNLP-2003. http://www.cs.pitt.edu/mpqa/#subj_lexicon.
  38. Rodríguez, D. A., Cho, G.-H., Evenson, K. R., Conway, T. L., Cohen, D., Ghosh-Dastidar, B., et al. (2012). Out and about: Association of the built environment with physical activity behaviors of adolescent females. Health and Place, 18(1), 55–62.CrossRefGoogle Scholar
  39. Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing (Vol. 12, pp. 44–49).Google Scholar
  40. Seeger, C. J. (2008). The role of facilitated volunteered geographic information in the landscape planning and site design process. GeoJournal, 72(3–4), 199–213.CrossRefGoogle Scholar
  41. Shariff, A. R. B., Egenhofer, M. J., & Mark, D. M. (1998). Natural-language spatial relations between linear and areal objects: The topology and metric of English-language terms. International Journal of Geographical Information Science, 12(3), 215–245.Google Scholar
  42. Shaw, S.-L., & Yu, H. (2009). A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space. Journal of Transport Geography, 17(2), 141–149.CrossRefGoogle Scholar
  43. Shaw, S. L., Yu, H., & Bombom, L. S. (2008). A space-time GIS approach to exploring large individual-based spatiotemporal datasets. Transactions in GIS, 12(4), 425–441.CrossRefGoogle Scholar
  44. Shelton, T., Poorthuis, A., Graham, M., & Zook, M. (2014). Mapping the data shadows of Hurricane Sandy: Uncovering the sociospatial dimensions of ‘big data’. Geoforum, 52, 167–179.CrossRefGoogle Scholar
  45. Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.Google Scholar
  46. Shiny, R. (n.d). RStudio: A web application framework for R. Retrieved September 10, 2016, from https://shiny.rstudio.com/.
  47. Sui, D., & DeLyser, D. (2012). Crossing the qualitative-quantitative chasm I hybrid geographies, the spatial turn, and volunteered geographic information (VGI). Progress in Human Geography, 36(1), 111–124.Google Scholar
  48. Waagmeester, J. (2016). An extension to Leaflet that contains configurations for various free tile providers, GitHub. https://github.com/leaflet-extras/leaflet-providers.
  49. Young, J. C., & Gilmore, M. P. (2013). The spatial politics of affect and emotion in participatory GIS. Annals of the Association of American Geographers, 103(4), 808–823.CrossRefGoogle Scholar
  50. Zenk, S. N., Schulz, A. J., Matthews, S. A., Odoms-Young, A., Wilbur, J., Wegrzyn, L., et al. (2011). Activity space environment and dietary and physical activity behaviors: A pilot study. Health and Place, 17(5), 1150–1161.CrossRefGoogle Scholar
  51. Zhou, X., Li, D., & Larsen, L. (2016a). Using web-based participatory mapping to investigate children’s perceptions and the spatial distribution of outdoor play places. Environment and Behavior, 48(7), 859–884.CrossRefGoogle Scholar
  52. Zhou, X., Yu, W., & Sullivan, W. C. (2016b). Making pervasive sensing possible: Effective travel mode sensing based on smartphones. Computers, Environment and Urban Systems, 58, 52–59.CrossRefGoogle Scholar
  53. Zook, M., & Graham, M. (2010). Featured graphic: The virtual ‘bible belt’. Environment and Planning A, 42(4), 763–764.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Georgia Southern UniversityStatesboroUSA
  2. 2.Department of Landscape Architecture and Urban PlanningTexas A&M UniversityCollege StationUSA

Personalised recommendations