Skip to main content
Log in

Systemic geopolitical modeling. Part 1: prediction of geopolitical events

  • Published:
GeoJournal Aims and scope Submit manuscript

Abstract

We give two general mathematical models predicting geopolitical events into a geopolitical system according to Mazis’ lakatosian formulation methodology for a Systemic Geopolitical Analysis. To this end, we consider weighted geopolitical indices and their measurements. When the weighted geopolitical indices, as well as the related geopolitical measurements take values in different times and different geographical points, then they form two sets in the four-dimensional Euclidean space. The distance between these sets can be considered as a measure for assessing the occurrence or not of a geopolitical event. To this direction, we give general frameworks of two algorithms for determining the time moments and geographical points at which is expected the appearance of peculiar geopolitical events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Reproducibility also refers to the ability of an entire experiment or study to be reproduced, either by the researcher or by someone else working independently. It is one of the main principles of the scientific method and relies on ceteribus paribus. The result values are said to be commensurate if they are obtained (in distinct experimental trials) according to the same reproducible experimental description and procedure. The basic idea can be seen in Aristotle's dictum that there is no scientific knowledge of the individual, where the word used for individual in Greek had the connotation of the idiosyncratic, or wholly isolated occurrence. Thus all knowledge, all science, necessarily involves the formation of general concepts and the invocation of their corresponding symbols in language (http://en.wikipedia.org/wiki/Reproducibility).

  2. CTQ is a characteristic of a product or service which fulfills a critical customer requirement. CTQ’s are the basic elements to be used in driving process measurement, improvement, and control.

  3. As usually, \(\left( {P_{1/S}^{\left( j \right)} , \ldots ,P_{{N_{j} /S}}^{\left( j \right)} } \right)\) represents N j intrinsic properties (physical characteristics) into the system.

  4. According to Proposition 6.2. i, a suitable selection of the M + 1 time moments tv is given by the formula

    $$t_{v} = \frac{{T_{1} - T_{0} }}{2}\cos \left( {\frac{2v + 1}{2v + 2}\pi } \right) + \frac{{T_{1} + T_{0} }}{2}$$

References

  • Aron, R. (1967). Qu’est-ce qu’une théorie des relations internationales? Revue française de science politique, 17(5).

  • Avriel, M. (2003). Nonlinear programming: Analysis and methods, Dover Publishing, ISBN 0-486-43227-0.

  • Bazaraa, M. S., & Shetty, C. M. (1979). Nonlinear programming. Theory and algorithms, Wiley, ISBN 0-471-78610-1.

  • Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Cambridge, MA: Athena Scientific, ISBN 1-886529-00-0.

  • Bloom, T. (1984). On the convergence of interpolating polynomials for entire functions, analyse complex. In Proceedings, Toulouse 1983, Lecture Notes in Mathematics 1094, Berlin: Springer.

  • Bonnans, F. J., Gilbert, C. J., Lemaréchal, C., & Sagastizábal, C. A. (2006). Numerical optimization: Theoretical and practical aspects, Universitext (Second revised ed. of translation of 1997 French ed.) (pp. xiv+490). Berlin: Springer. doi:10.1007/978-3-540-35447-5, ISBN 3-540-35445-X. MR2265882.

  • Brinkhuis, J., & Tikhomirov, V. (2005). Optimization: Insights and applications. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Cederman, L. E. (2002). Endogenizing geopolitical boundaries with agent-based modeling. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 99(3), 7796–7803.

    Google Scholar 

  • Cederman, L. E. (2003). Explaining state sizes: A geopolitical model. In Macal, C., Michael N., & David Sallach (Eds.), Proceedings of Agent 2003: Challenges in Social Simulation, Argonne, IL: Argonne National Laboratory.

  • Cederman, L. E. (2004). Agent-based models of geopolitical processes. Bildarchiv der ETH-Bibliothek Prod. doi. 10.3929/ethz-a-004743173.

  • Cederman, L. E., & Girardin, L. (2005). Exploring geopolitics with Agent-Based Modeling, prepared for presentation at University of Tokyo, September 24–25, 2005, http://citrus.c.u-tokyo.ac.jp/mas/achievement/ws2005/ws2005_cederma_paper.pdf.

  • Cooper, C. S., Beyeler W. E., Hobbs, J. A., Mitchell, M., Copley, Z. R., & Antognoli, M. (2012). Behaviors of actors in a resource-exchange model of geopolitics. Complex, pp 70–82.

  • Daras, N. J., & Mazis, J. Th. (2014). Geopolitical Systemic Modeling. Part 2. Subjectivity in the Prediction of Geopolitical Events.

  • Elman, C., & Elman, M. F. (Eds.) (2003). Progress in international relations theory: Appraising the field, MIT Press, Cambridge, Massachusets, London, England (Belfer Center for Science and International Affairs, John F. Kennedy School of Government, Harvard University).

  • Gasca, M., & Sauer, T. (2000). Polynomial interpolation in several variables. Advances in Computational Mathematics, 12(4), 377–410.

    Article  Google Scholar 

  • Gawlik, R. (2010). Managerial decision making in geopolitically turbulent environments. In Generating innovative solutions to recurring problems in the global business environment: A multi-, inter-, and trans disciplinary approach to formulating and maintaining a competitive organizational edge, pp. 214–221, http://mpra.ub.uni-muenchen.de/45408/1/MPRA_paper_45408.pdf.

  • Goodman, T. N. T., & Sharma, A. (1984). Convergence of multivariate polynomials interpolating on a triangular array. Transactions of the American Mathematical Society, 285(1), 141–157.

    Article  Google Scholar 

  • Hoff P. D. & Ward M. D. (2004). Modeling dependencies in international relations networks. Political Analysis 12, 160–175, http://www.csss.washington.edu/Papers/wp35.pdf.

  • Kergin, P. (1980). A natural interpolation of CK functions. Journal of Approximation Theory, 29, 278–293.

    Article  Google Scholar 

  • Kuperman, M. N. (2010). A model for the emergence of geopolitical division. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368, 5695–5706.

    Article  Google Scholar 

  • Levin, R. I. (2006). Statistics for management, (3th edn.) Prentice-Hall, March 1984, Digitized: 30 March 2006, ISBN-10: 0138452482, ISBN-13: 978-0138452483.

  • Luenberger, D. G., & Ye, Y. (2008). Linear and nonlinear programming, International Series in Operations Research & Management Science 116 (Third ed.), New York: Springer. pp. xiv+546, ISBN 978-0-387-74502-2. MR 2423726.

  • Mazis, I. Th. (2002). La geopolitica contemporanea: basi e definizioni di metodo, DADAT, Università degli Studi di Napoli-Federico II, Dipartimento delle Dinamiche Ambientali e Territoriali, Saggi di Geopolitica, (pp. 1–11) Napoli.

  • Mazis, I. Th. (2008). [China-Bei Jing], Writing Methodology of a Geopolitical Analysis [Structure, Concepts and Terms], C.I.I.S.S./I.A.A.: China Institute for International Strategic Studies (C.I.I.S.S.)/Defence Analyses Institute (D.A.I.), Cooperation on Defence Diplomacy, Athens/Beijing at May 2008, Defensor Pacis (Vol. 23, pp. 53–59) (Special Issue I.A.A./C.I.I.S.S.), Special Issue.

  • Mazis, I Th. (2013). L’Analyse Géopolitique Systémique: Propositions Terminologiques et Définitions Métathéoriques selon l’exigence métathéorique lakatienne. Géographies, Géopolitiques et Géostratégies Régionales, 1(1), 21–32.

    Google Scholar 

  • Mazis, I Th. (2014a). Methodology for systemic geopolitical analysis according to the Lakatosian model, (Post graduate Colloquium) Avrasya Enstitüsü. Turkey: İstanbul Üniversitesi.

    Google Scholar 

  • Mazis, I. Th. (2014b). Critique Μétathéorique de la Théorie des Relations Internationales et de la Géopolitique. Le Cadre Néopositiviste, book in preparation.

  • Micchelli, C. A., & Milman, P. (1980). A formula for Kergin interpolation in RK. Journal of Approximation Theory, 29, 294–296.

    Article  Google Scholar 

  • Nocedal J., & Wright S. J. (2006) Numerical optimization, Springer, 2nd edition, ISBN 0-387-98793-2.

  • Parsopoulos, K. E., & Vrahatis, M. N. (2002). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1, 235–306.

    Article  Google Scholar 

  • Parsopoulos, K. E. & Vrahatis, M. N. (2010). Particle swarm optimization and intelligence: Advances and applications, Information Science Reference, Hershey-New York, ISBN 978-1-61520-666-7 (hardcover)- ISBN 978-1-61520-667-4 (e-book).

  • Robertson, G. H. (1993). Quality through statistical thinking: Improving process control and capability, Amer Supplier Inst., (2nd edn), ISBN-10: 0941243087, ISBN-13: 978-0941243087.

  • Ruszczyński A. P. (2006). Nonlinear Optimization, Princeton, NJ: Princeton University Press, pp. xii+454, ISBN 978-0691119151. MR 2199043.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Daras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daras, N.J., Mazis, J.T. Systemic geopolitical modeling. Part 1: prediction of geopolitical events. GeoJournal 80, 653–678 (2015). https://doi.org/10.1007/s10708-014-9569-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10708-014-9569-3

Keywords

Navigation