, Volume 75, Issue 2, pp 133–148 | Cite as

Geography and computational social science

  • Paul M. Torrens


The emergence of computational social science has had a transformative influence on the geographical sciences, integrating diverse themes of scholarship and allying it with the pursuit of grand challenges in the physical, natural, and life sciences. Geography has benefitted from many of these developments and has, in turn, catalyzed significant advances and innovation in computational social science. In this paper, I explore the relationship between geography, computing, and the social sciences by examining the evolution of some central themes in the computational social sciences: complexity, informatics, modeling and simulation, information visualization, cyberspace, socio-technical systems, and semantic computing.


Computational social science Geographic Information Science Complexity Agent-based models Cyberspace Cyber-infrastructure Social computing 



This material is based upon work supported by the National Science Foundation under Grant Nos. 1002519 and 0643322.


  1. Aldenderfer, M., & Maschner, H. D. G. (Eds.). (1996). Anthropology, space, and geographic information systems. Oxford: Oxford University Press.Google Scholar
  2. Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: A systematic approach. Berlin: Springer.Google Scholar
  3. Anselin, L. (1988). Spatial econometrics: Methods and models. Boston: Kluwer.Google Scholar
  4. Armstrong, M. P., & Ruggles, A. J. (2005). Geographic information technologies and personal privacy. Cartographica: The International Journal for Geographic Information and Geovisualization, 40(4), 63–73.CrossRefGoogle Scholar
  5. Arthur, W. B. (1990). Positive feedbacks in the economy. Scientific American, February, pp. 80–85.Google Scholar
  6. Axelrod, R. (1997). The complexity of cooperation: Agent-based models of competition and collaboration. Princeton: Princeton Universiy Press.Google Scholar
  7. Azuma, R., Neely, H., Daily, M., & Geiss, R. (2000). Visualization tools for free flight air-traffic management. IEEE Computer Graphics and Applications, 20(5), 32–36.CrossRefGoogle Scholar
  8. Bainbridge, W. S. (2007). The scientific research potential of virtual worlds. Science, 317(5837), 472–476.CrossRefGoogle Scholar
  9. Bateman, I. J., Lovett, A. A., & Brainard, J. S. (2005). Applied environmental economics: A GIS approach to cost-benefit analysis. Cambridge: Cambridge University Press.Google Scholar
  10. Batty, M. (1997). The computable city. International Planning Studies, 2(2), 155–173.CrossRefGoogle Scholar
  11. Batty, M. (2005). Cities and complexity: Understanding cities with cellular automata, agent-based models, and fractals. Cambridge: MIT.Google Scholar
  12. Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771.CrossRefGoogle Scholar
  13. Batty, M., & Longley, P. (1994). Fractal cities. London: Academic Press.Google Scholar
  14. Baudrillard, J. (1994). Simulacra and simulation. Ann Arobor: University of Michigan Press.Google Scholar
  15. Benenson, I., & Omer, I. (2003). High-resolution census data: A simple way to make them useful. Data Science Journal (Spatial Data Usability Special Section), 2(26), 117–127.Google Scholar
  16. Benenson, I., & Torrens, P. M. (2004). Geosimulation: Automata-based modeling of urban phenomena. London: Wiley.Google Scholar
  17. Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic Web. Scientific American, 284(5), 34–44.CrossRefGoogle Scholar
  18. Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From natural to artificial systems. New York: Oxford University Press.Google Scholar
  19. Börner, K., & Penumarthy, S. (2003). Social diffusion patterns in three-dimensional virtual worlds. Information Visualization, 2(3), 182–198.CrossRefGoogle Scholar
  20. Bowyer, K. W. (2004). Face recognition technology: Security versus privacy. IEEE Technology and Society Magazine, 23(2), 9–20.CrossRefGoogle Scholar
  21. Burton, I. (1963). The quantitative revolution in theoretical geography. The Canadian Geographer, 7(4), 151–162.CrossRefGoogle Scholar
  22. Butler, D. (2006). Virtual globes: The web-wide world. Nature, 439(7078), 776–778.CrossRefGoogle Scholar
  23. Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325(5939), 414–416.CrossRefGoogle Scholar
  24. Cairncross, F. (1997). The death of distance: How the communications revolution will change our lives. New York: McGraw-Hill.Google Scholar
  25. Castells, M. (2001). The internet galaxy: Reflections on the internet, business, and society. New York: Oxford University Press.Google Scholar
  26. Chainey, S., & Ratcliffe, J. (2005). GIS and crime mapping. Chichester: Wiley.Google Scholar
  27. Chang, S.-L., Chen, L.-S., Chung, Y.-C., & Chen, S.-W. (2004). Automatic license plate recognition. IEEE Transactions on Intelligent Transportation Systems, 5(1), 42–53.CrossRefGoogle Scholar
  28. Chorley, R. J., & Haggett, P. (1967). Models in geography. London: Methuen.Google Scholar
  29. Christaller, W. (1933). Die zentralen Orte in Süddeutschland (Central Places in Southern Germany). Jena: Gustav Fischer.Google Scholar
  30. Clark, W. A. V., & Cadwaller, M. (1973). Locational stress and residential mobility. Environment and Behavior, 5(1), 29–41. CrossRefGoogle Scholar
  31. Clarke, K. C., Gazulis, N., Dietzel, C., & Goldstein, N. C. (2007). A decade of SLEUTHing: Lessons learned from applications of a cellular automaton land use change model. In P. Fisher (Ed.), Classics in IJGIS: Twenty years of the International Journal of Geographical Information Science and Systems (pp. 413–427). Boca Raton: CRC.Google Scholar
  32. Cliff, A. D., & Ord, J. K. (1973). Spatial autocorrelation. London: Pion.Google Scholar
  33. Cutter, S. L. (2003). The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 93(1), 1–12.CrossRefGoogle Scholar
  34. Day, C. (2007). The death of distance has been exaggerated. Computing in Science and Engineering, 9(1), 104–104.CrossRefGoogle Scholar
  35. Dean, J., & Ghemawat, S. (2008). Map reduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–144.CrossRefGoogle Scholar
  36. Deitrick, S., & Edsall, R. M. (2006). The influence of uncertainty visualization on decision making: An empirical evaluation. In A. Riedl, W. Kainz, & G. A. Elmes (Eds.), Progress in spatial data handling: The twelfth international symposium on spatial data handling (pp. 719–738). Berlin: Springer.Google Scholar
  37. Dobson, J., & Fisher, P. (2003). Geoslavery. IEEE Technology and Society Magazine, 22(1), 47–52.CrossRefGoogle Scholar
  38. Dodge, M. (2001). Cybergeography. Environment and Planning B, 28(1), 1–2.CrossRefGoogle Scholar
  39. Dodge, M., & Kitchin, R. M. (2000). Mapping cyberspace. London: Routledge.Google Scholar
  40. Dodge, M., & Kitchin, R. M. (2001). Atlas of cyberspace. London: Addison-Wesley.Google Scholar
  41. Dodge, M., & Kitchin, R. M. (2004). Codes of life: Identification codes and the machine-readable world. Environment and Planning D, 23(6), 851–881.Google Scholar
  42. Dodge, M., & Kitchin, R. M. (2005). Code and the transduction of space. Annals of the Association of American Geographers, 95(1), 162–180.CrossRefGoogle Scholar
  43. Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.CrossRefGoogle Scholar
  44. Eagle, N., Pentland, A., & Lazer, D. (2009). Inferring social network structure using mobile phone data. Proceedings of the National Academy of Sciences, 106(36), 15274–15278.CrossRefGoogle Scholar
  45. Edsall, R. M. (2003). The parallel coordinate plot in action: Design and use for geographic visualization. Computational Statistics & Data Analysis, 43(4), 605–619.CrossRefGoogle Scholar
  46. Egenhofer, M. J. (2002). Toward the semantic geospatial web. In K. Makki & N. Pissinou (Eds.), The tenth ACM international symposium on advances in geographic information systems. McLean: ACM.Google Scholar
  47. Elwood, S. (2010). Geographic information science: Emerging research on the societal implications of the geospatial web. Progress in Human Geography (in press).Google Scholar
  48. Epstein, J. M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton: Princeton University Press.Google Scholar
  49. Epstein, J. M., & Axtell, R. (1996). Growing artificial societies from the bottom up. Washington D.C.: Brookings Institution.Google Scholar
  50. Eubank, S., Guclu, H., Kumar, A., Marathe, M. V., Srinivasan, A., Toroczkai, Z., et al. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429(6988), 180–184.CrossRefGoogle Scholar
  51. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1997). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.Google Scholar
  52. Ferguson, N. (2007). Capturing human behaviour. Nature, 446(7137), 733.CrossRefGoogle Scholar
  53. Ferriss, T. (2007). The 4-hour workweek: Escape 9-5, live anywhere, and join the new rich. New York: Crown. Google Scholar
  54. Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2004). Geographically weighted regression: The analysis of spatially varying relationships. Chichester: John Wiley & Sons. Google Scholar
  55. Friedman, T. (2005). The World is flat: A brief history of the twenty-first century. New York: Farrar, Straus & Giroux.Google Scholar
  56. Fujita, M., Krugman, P., & Venables, A. J. (2001). The spatial economy: Cities, regions, and international trade. Cambridge, MA: The MIT Press. Google Scholar
  57. Gatrell, A. C. (2005). Complexity theory and geographies of health: A critical assessment. Social Science and Medicine, 60(12), 2661–2671.CrossRefGoogle Scholar
  58. Gershon, N., & Eick, S. G. (1997). Information visualization. IEEE Computer Graphics and Applications, 17(4), 29–31.CrossRefGoogle Scholar
  59. Gibson, W. (1984). Neuromancer. New York: Ace Books.Google Scholar
  60. Gieryn, T. F. (2000). A space for place in sociology. Annual Review of Sociology, 26(1), 463–496.CrossRefGoogle Scholar
  61. Golledge, R., & Stimson, R. J. (1997). Spatial behavior: A geographic perspective. New York: Guilford.Google Scholar
  62. Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.CrossRefGoogle Scholar
  63. Goodchild, M. F., Anselin, L., Appelbaum, R. P., & Harthorn, B. H. (2000). Toward spatially integrated social science. International Regional Science Review, 23(2), 139–159.Google Scholar
  64. Graham, S. N. (2005). Software-sorted geographies. Progress in Human Geography, 29(5), 562–580.CrossRefGoogle Scholar
  65. Haggett, P., & Chorley, R. J. (1969). Network analysis in geography. London: Hodder & Stoughton Education.Google Scholar
  66. Haggett, P., Cliff, A. D., & Frey, A. (1977). Locational analysis in human geography. London: Arnold.Google Scholar
  67. Haklay, M., Singleton, A., & Parker, C. (2008). Web mapping 2.0: The neogeography of the GeoWeb. Geography Compass, 2(6), 2011–2039.CrossRefGoogle Scholar
  68. Haklay, M., & Weber, P. (2008). OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.CrossRefGoogle Scholar
  69. Hall, P. (1988). Cities of tomorrow: An intellectual history of urban planning and design in the twentieth century. Oxford: Blackwell.Google Scholar
  70. Harrower, M., & Brewer, C. A. (2003). An online tool for selecting colour schemes for maps. The Cartographic Journal, 40(4), 27–37.CrossRefGoogle Scholar
  71. Highfield, L. D., Ward, M. P., & Laffan, S. W. (2008). Representation of animal distributions in space: How geostatistical estimates impact simulation modeling of foot-and-mouth disease spread. Veterinary Research, 39(2), 17.CrossRefGoogle Scholar
  72. Hill, J. O., Wyatt, H. R., Reed, G. W., & Peters, J. C. (2003). Obesity and the environment: Where do we go from here? Science, 299(5608), 853–855.CrossRefGoogle Scholar
  73. Hudson-Smith, A. (2002). 30 days in active worlds. In R. Schroeder (Ed.), The social life of avatars: Presence and interaction in shared virtual environments (pp. 77–89). London: Springer.Google Scholar
  74. Izumi, K., & Nara, A. (2009). Spatial information technology for supporting the surgical headquarters. In Digital human symposium, March 4, 2009, Tokyo.Google Scholar
  75. Kapler, T., & Wright, W. (2005). GeoTime information visualization. Information Visualization, 4(2), 136–146.CrossRefGoogle Scholar
  76. Kauffman, S. (1996). At home in the universe: The search for the laws of self-organization and complexity. Oxford: Oxford University Press.Google Scholar
  77. King, L. (1994). Spatial analysis and the institutionalization of geography as a social science. Urban Geography, 14(6), 538–551.Google Scholar
  78. Kitchin, R. M. (1998). Cyberspace: The world in the wires. Chichester: Wiley.Google Scholar
  79. Kitchin, R. M., Blades, M., & Golledge, R. A. (1997). Relations between psychology and geography. Environment and Behavior, 29(4), 554–573.CrossRefGoogle Scholar
  80. Klippel, A., Hardisty, F., & Weaver, C. (2009). Star plots: How shape characteristics influence classification tasks. Cartography and Geographic Information Science, 36(2), 149–163.CrossRefGoogle Scholar
  81. Kolko, J. (2000). The death of cities? The death of distance? Evidence from the geography of commercial internet usage. In I. Vogelsang & B. M. Compaine (Eds.), The internet upheaval: Raising questions, seeking answers in communications policy (pp. 73–97). New York: TPRC.Google Scholar
  82. Korpela, E., Werthimer, D., Anderson, D., Cobb, J., & Leboisky, M. (2001). SETI@home-massively distributed computing for SETI. Computing in Science and Engineering, 3(1), 78–83.CrossRefGoogle Scholar
  83. Krugman, P. (1992). Geography and trade. Cambridge, MA: MIT.Google Scholar
  84. Krugman, P. (1996). The self-organizing economy. Malden, MA: Blackwell.Google Scholar
  85. Krugman, P. (2005). Increasing returns and economic geography. International Library of Critical Writings in Economics, 188(2), 3–19.Google Scholar
  86. Krumm, J., & Horvitz, E. (2007). Predestination: Where do you want to go today? IEEE Computer, 40(4), 105–107.Google Scholar
  87. Kuhn, W. (2005). Geospatial semantics: Why, of what, and how? In Lecture notes in computer science 3534: Journal on Data Semantics III (pp. 1–24). Berlin: Springer.Google Scholar
  88. Kurland, K. S., & Gorr, W. L. (2006). GIS tutorial for health. Redlands: ESRI.Google Scholar
  89. Kwan, M.-P. (2001). Cyberspatial cognition and individual access to information: The behavioral foundation of cybergeography. Environment and Planning B, 28(1), 21–37.CrossRefGoogle Scholar
  90. Kwan, M.-P., Casas, I., & Schmitz, B. (2004). Protection of geoprivacy and accuracy of spatial information: How effective are geographical masks? Cartographica: The International Journal for Geographic Information and Geovisualization, 39(2), 15–28.CrossRefGoogle Scholar
  91. Kwan, M.-P., Janelle, D., & Goodchild, M. F. (2003). Accessibility in space and time: A theme in spatially integrated social science. Journal of Geographical Systems, 5(1), 1–3.CrossRefGoogle Scholar
  92. Kwan, M.-P., & Schwanen, T. (2009). Quantitative revolution 2: The critical (re)turn. The Professional Geographer, 61(3), 283–291.CrossRefGoogle Scholar
  93. Lake, M. W. (2000). Computer simulation of Mesolithic foraging. In G. Gumerman & T. Kohler (Eds.), Dynamics in human and primate societies: Agent-based modeling of social and spatial processes (pp. 107–143). New York: Oxford University Press.Google Scholar
  94. Latombe, J.-C. (1991). Robot motion planning. Norwell: Kluwer.Google Scholar
  95. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D., et al. (2009). Computational social science. Science, 323(5915), 721–723.CrossRefGoogle Scholar
  96. Levine, M. (1982). You-are-here maps: Psychological considerations. Environment and Behavior, 14(2), 221–237.CrossRefGoogle Scholar
  97. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. Proceedings of the National Academy of Sciences of the United States of America, 102(33), 11623–11628.CrossRefGoogle Scholar
  98. Logan, R. K. (2007). The extended mind: The emergence of language, the human mind and culture. Toronto: University of Toronto Press.Google Scholar
  99. ltekin, A., Heil, B., Garlandini, S., & Fabrikant, S. I. (2009). Evaluating the effectiveness of interactive map interface designs: A case study integrating usability metrics with eye-movement analysis. Cartography and Geographic Information Science, 36(1), 5–17.CrossRefGoogle Scholar
  100. Macy, M. W., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology, 28, 143–166.CrossRefGoogle Scholar
  101. Malecki, E. J., & Gorman, S. P. (2001). Maybe the death of distance, but not the end of geography: The Internet as a network. In T. R. Leinbach & S. D. Brunn (Eds.), Worlds of electronic commerce: Economic, geographical and social dimensions (pp. 87–105). New York: Wiley.Google Scholar
  102. Mallota, H. A., & Basten, K. (2008). Embodied spatial cognition: Biological and artificial systems. Image and Vision Computing, 27(11), 1658–1670.CrossRefGoogle Scholar
  103. Manson, S. M. (2007). Challenges in evaluating models of geographic complexity. Environment and Planning B, 34(2), 245–260.CrossRefGoogle Scholar
  104. Manson, S. M., & Evans, T. (2007). Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States. Proceedings of the National Academy of Sciences, 104(52), 20678–20683.CrossRefGoogle Scholar
  105. McCullough, D. (2004). Digital ground: Architecture, pervasive computing, and environmental knowing. Cambridge: MIT.Google Scholar
  106. McLafferty, S., & Preston, V. (1992). Spatial mismatch and labor market segmentation for African American and Latina women. Economic Geography, 68(4), 406–431.CrossRefGoogle Scholar
  107. Minsky, M. L. (1967). Computation: Finite and infinite machines. New Jersey: Prentice-Hall.Google Scholar
  108. Mitchell, W. J. (1995). City of bits: Space, place, and the infobahn. Cambridge: MIT.Google Scholar
  109. Monmonier, M. S. (2002). Spying with maps: Surveillance technologies and the future of privacy. Chicago: The University of Chicago Press.Google Scholar
  110. Montello, D. R. (2002). Cognitive map-design research in the twentieth century: Theoretical and empirical approaches. Cartography and Geographic Information Science, 29(3), 283–304.CrossRefGoogle Scholar
  111. Morehouse, S. (1985). ARC/INFO: A geo-relational model for spatial information. In Auto-Carto VII: Proceedings of the digital representations of spatial knowledge (pp. 388–397). Washington, D.C.: Auto-Carto.Google Scholar
  112. Nagel, K., Rickert, M., Frye, R., Stretz, P., Simon, P., & Jacob, R. (1998). Regional transportation simulations. In A. Tenter, et al. (Eds.), High performance computing (pp. 104–109). San Diego: The Society for Computer Simulation International.Google Scholar
  113. Nasukawa, T., & Yi, J. (2003). Sentiment analysis: Capturing favorability using natural language processing. In J. Gennari, B. Porter, & Y. Gil (Eds.), Proceedings of the second international conference on knowledge capture (pp. 70–77). Sanibel Island: Association for Computing Machinery.Google Scholar
  114. National Science Foundation. (2007). Cyberinfrastructure vision for 21st Century discovery. Alexandria: National Science Foundation Cyberinfrastructure Council.Google Scholar
  115. Nature Publishing Group. (2008). Community cleverness required. Nature, 455(7209), 1.CrossRefGoogle Scholar
  116. O’Reilly, T. (2007). What is Web 2.0: Design patterns and business models for the next generation of software. Communications and Strategies, 1(1), 17.Google Scholar
  117. O’Sullivan, D. (2009). Changing neighborhoods—neighborhoods changing: A framework for spatially explicit agent-based models of social systems. Sociological Methods & Research, 37(4), 498–530.CrossRefGoogle Scholar
  118. Oden, J. T., Belytschko, T., Fish, J., Hughes, T. J. R., Johnson, C., Keyes, D., et al. (2006). Simulation-based engineering science: Revolutionizing engineering science through simulation. Alexandria: National Science Foundation.Google Scholar
  119. Olson, G. M., & Olson, J. S. (2000). Distance matters. Human-Computer Interaction, 15(2), 139–178.CrossRefGoogle Scholar
  120. Osawa, N. (2006). Tactile glyphs for palpation of relationships. In Tenth international conference on information visualization (pp. 575–584). July 5–7, 2006, London.Google Scholar
  121. Peters, A., & MacDonald, H. (2005). Unlocking the census with GIS. Redlands: ESRI.Google Scholar
  122. Portugali, J. (2000). Self-organization and the city. Berlin: Springer.Google Scholar
  123. Portugali, J. (Ed.). (2006). Complex artificial environments: Simulation, cognition & VR in the study and planning of cities. Berlin: Springer.Google Scholar
  124. Raubal, M. (2001). Human wayfinding in unfamiliar buildings: A simulation with a cognizing agent. Cognitive Processing, 2(3), 363–388.Google Scholar
  125. Reynolds, C. (1999). Steering behaviors for autonomous characters. In Game developers conference, San Jose, CA.Google Scholar
  126. Rheingold, H. (2002). Smart mobs: The next social revolution. London: Perseus Books.Google Scholar
  127. Rigaux, P., Scholl, M. O., & Voisard, A. (2002). Spatial databases with application to GIS. San Francisco: Morgan-Kauffmann.Google Scholar
  128. Sakoda, J. M. (1971). The checkerboard model of social interaction. Journal of Mathematical Sociology, 1(1), 119–132.Google Scholar
  129. Schelling, T. C. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1, 143–186.Google Scholar
  130. Schiller, J. H., & Voisard, A. (2004). Location-based services. San Francisco: Morgan-Kauffmann.Google Scholar
  131. Schmidt, T., & Townsend, A. (2003). Why Wi-Fi wants to be free. Communications of the ACM, 46(5), 47–52.CrossRefGoogle Scholar
  132. Schroeder, R. (Ed.). (2002). The social life of Avatars: Presence and interaction in shared virtual environments. London: Springer.Google Scholar
  133. Schuurman, N. (1999). Speaking with the enemy? A conversation with Michael Goodchild. Environment and Planning D: Society and Space, 17(1), 1–2.CrossRefGoogle Scholar
  134. Shekhar, S., & Chawla, S. (2003). Spatial databases: A tour. New York: Prentice-Hall.Google Scholar
  135. Shiode, N. (2001). 3D urban models: Recent developments in the digital modeling of urban environments in three-dimensions. GeoJournal, 52(3), 263–269.CrossRefGoogle Scholar
  136. Shiode, N., & Torrens, P. M. (2008). Comparing the growth dynamics of real and virtual cities. In K. Hornsby & M. Yuan (Eds.), Understanding dynamics of geographic domains (pp. 187–203). Boca Raton: CRC.Google Scholar
  137. Singleton, A. D., & Longley, P. A. (2009). Geodemographics, visualisation, and social networks in applied geography. Applied Geography, 29(3), 289–298.CrossRefGoogle Scholar
  138. Small, H. (1999). Visualizing science by citation mapping. Journal of the American society for Information, 50(9), 799–813.CrossRefGoogle Scholar
  139. Smith, T. R., & Frew, J. (1995). Alexandria digital library. Communication of the ACM, 38(4), 61–62.CrossRefGoogle Scholar
  140. Smith, I., LaMarca, A., Consolvo, S., & Dourish, P. (2005). A social approach to privacy in location-enhanced computing. In P. Robinson, H. Vogt, & W. Wagealla (Eds.), Privacy, security and trust within the context of pervasive computing (pp. 157–167). Berlin: Springer.CrossRefGoogle Scholar
  141. Sorenson, O. (2003). Social networks and industrial geography. Journal of Evolutionary Economics, 13(5), 513–527.CrossRefGoogle Scholar
  142. Sperb, R. M., & Cabral, R. B. (2004). Fuzzy agent-based model: A hybrid tool for exploring spatial perception and behavior. In Annual meeting of the North American fuzzy Information Processing Society (pp. 120–125). Banff, Alberta: IEEE.Google Scholar
  143. Sterling, B. (2004). When blobjects rule the earth. In SIGGRAPH. Los Angeles: ACM.Google Scholar
  144. Sui, D. Z. (2004). Tobler’s first law of geography: A big idea for a small world? Annals of the Association of American Geographers, 94(2), 269–277.CrossRefGoogle Scholar
  145. Sui, D. Z. (2007). Geospatial technologies for surveillance: Tracking people and commodities in real-time. Geographical Review, 93(3), 3–9.Google Scholar
  146. Sui, D. Z., & Wu, X. B. (2006). Changing patterns of residential segregation in a prismatic metropolis: A lacunarity-based study in Houston, 1980–2000. Environment and Planning B: Planning and Design, 33(4), 559–579.CrossRefGoogle Scholar
  147. Sutton, P. (1997). Modeling population density with night-time satellite imagery and GIS. Computers, Environment and Urban Systems, 21(3/4), 227–244.CrossRefGoogle Scholar
  148. Ter Wal, A. L. J., & Boschma, R. A. (2009). Applying social network analysis in economic geography: Framing some key analytic issues. Annals of Regional Science, 43(3), 739–756.CrossRefGoogle Scholar
  149. The Economist. (2003). The revenge of geography. The Economist, March 13.Google Scholar
  150. Theraulaz, G., Bonabeau, E., & Deneubourg, J.-L. (1998). The origin of nest complexity in social insects. Complexity, 3(6), 15–25.CrossRefGoogle Scholar
  151. Thrift, N., & French, S. (2002). The automatic production of space. Transactions of the Institute of British Geographers, 27(3), 309–335.CrossRefGoogle Scholar
  152. Tobler, W. (2004). Thirty-five years of computer cartograms. Annals of the Association of American Geographers, 94(1), 58–73.CrossRefGoogle Scholar
  153. Torrens, P. M. (2006). Simulating sprawl. Annals of the Association of American Geographers, 96(2), 248–275.CrossRefGoogle Scholar
  154. Torrens, P. M. (2008). Wi-Fi geographies. Annals of the Association of American Geographers, 98(1), 59–84.CrossRefGoogle Scholar
  155. Torrens, P. M. (2009). Process models and next-generation geographic information technology. In ESRI (Ed.), GIS best practices: Essays on geography and GIS (pp. 63–75). Redlands: ESRI.Google Scholar
  156. Torrens, P. M., & O’Sullivan, D. (2001). Cellular automata and urban simulation: Where do we go from here? Environment and Planning B, 28(2), 163–168.CrossRefGoogle Scholar
  157. Townsend, A. (2001). Networked cities and the global structure of the Internet. American Behavioral Scientist, 44(10), 1698–1717.CrossRefGoogle Scholar
  158. Treves, R. (2007). Interview with Steve Chilton. Google earth design. Accessed January 1 2010.
  159. Tufte, E. R. (2001). The visual display of quantitative information. Cheshire, CT: Graphics.Google Scholar
  160. Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series, 2(42), 230–265.Google Scholar
  161. Turing, A. M. (1938). Correction to: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series, 2(43), 544–546.CrossRefGoogle Scholar
  162. Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59, 433–460.CrossRefGoogle Scholar
  163. Turner, A., & Penn, A. (2002). Encoding natural movement as an agent-based system: An investigation into human pedestrian behaviour in the built environment. Environment and Planning B: Planning and Design, 29(4), 473–490.CrossRefGoogle Scholar
  164. Ulam, S. (1969). A collection of mathematical problems. New York: Interscience.Google Scholar
  165. Vicsek, T. (2003). Crowd control. Europhysics News, 34(2), 45–49.CrossRefGoogle Scholar
  166. Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 63(2), 153–161.CrossRefGoogle Scholar
  167. von Neumann, J. (1951). The general and logical theory of automata. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 1–41). New York: Wiley.Google Scholar
  168. Waddell, P. A. (2002). UrbanSim: Modeling urban development for land use, transportation and environmental planning. Journal of the American Planning Association, 68(3), 297–314.CrossRefGoogle Scholar
  169. Wall, S., & Brewster, S. (2006). Feeling what you hear: Tactile feedback for navigation of audio graphs. In R. Grinter, T. Rodden, P. Aoki, E. Curtrell, R. Jeffries, & G. Olson (Eds.), SIGCHI Conference on human factors in computing systems (pp. 1123–1132). Montréal, Québec. Association for Computing Machinery.Google Scholar
  170. Wang, Y., Lai, P., & Sui, D. Z. (2003). Mapping the internet using GIS: The death of distance hypothesis revisited. Journal of Geographical Systems, 5(4), 381–405.CrossRefGoogle Scholar
  171. Ware, C. (2000). Information visualization: Perception for design. San Francisco: Morgan-Kauffman.Google Scholar
  172. Watts, D. J. (2007). A twenty-first century science. Nature, 445, 489.CrossRefGoogle Scholar
  173. Weiser, M. (1991). The computer for the 21st Century. Scientific American, 265(3), 94–104.CrossRefGoogle Scholar
  174. Wheatley, D., & Gillings, M. (2002). Spatial technology and archaeology: The archaeological applications of GIS. London: Taylor & Francis.CrossRefGoogle Scholar
  175. Wilbanks, T. J. (1994). “Sustainable development” in geographic perspective. Annals of the Association of American Geographers, 84(4), 541–556.CrossRefGoogle Scholar
  176. Wilson, A. G. (2000). Complex spatial systems. Harlow: Pearson.Google Scholar
  177. Wolfson, O., Xu, B., Jiang, L. & Chamberlain, S. (1998). Moving objects databases: Issues and solutions. In M. Rafanelli, J. C. Klensin, & P. Svensson (Eds.), The 10th international conference on scientific and statistical database management (pp. 111–122). Capri: IEEE Computer Society.Google Scholar
  178. Zhang, T., & Tsou, M.-H. (2009). Developing a grid-enabled spatial Web portal for internet GIServices and geospatial cyberinfrastructure. International Journal of Geographic Information Science, 23(5), 605–630.CrossRefGoogle Scholar
  179. Zook, M. A. (2002). Hubs, nodes, and bypassed places: A typology of e-commerce regions in the United States. Tijdschrift Voor Economische en Sociale Geografie, 93(5), 509–521.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Geosimulation Research Laboratory and GeoDa Center for Geospatial Analysis and Computation, School of Geographical Science & Urban PlanningArizona State UniversityTempeUSA

Personalised recommendations