Advertisement

GeoInformatica

, Volume 22, Issue 2, pp 383–410 | Cite as

OSCAR: a framework to integrate spatial computing ability and data aggregation for emergency management of public health

  • Danhuai Guo
  • Yingqiu Zhu
  • Wenwu Yin
Article

Abstract

Spatial computing has emerged a critical issue in emergency management of public health. Due to the complexity of spatial data structure and disperse character of spatio-temporal data, when emergency event of public health occurs, it is difficult to get the needed data and analysis it then make quick decision in a short time. In this paper, OSCAR: an Open Spatial Computing and data Resource platform were introduced including its components, framework, elements and two implementations. OSCAR provides a data resource aggregation platform to retrieve data from official statistic agencies through data service and database, scrawl related data from BBS and social media and mirror the environment data from earth observation data sites. All the dataset are arranged in data cubes according to their spatial and temporal dimensions. This mechanism ensures the feasibility and timeliness of time-sequence analysis of specific regions. The algorithms of spatial computing of public health are usually complicated and depend on particular computing environment, which is usually not default configuration of computer of nowadays. OSCAR deploys a series of computation images in a cloud-computing environment. The computation ability can be extended on-demand and thus the time of the computation can be shortened and limited in several minutes when it is needed. The two implementation of human rabies of China and H7N9 in China show the convenience of our platform.

Keywords

Spatial computing Data integration Emergency management Cloud computing Public health Framework 

Notes

Fundings

This work is partly supported by Natural Science Foundation of China under Grant No.41371386 and Beijing Natural Science Foundation under Grant No. 9172023. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. 1.
    Li K, Guan Y, Wang J, Smith G, Xu K, Duan L, Rahardjo A, Puthavathana P, Buranathai C, Nguyen T (2004) Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430(6996):209–213CrossRefGoogle Scholar
  2. 2.
    Chen H, Smith G, Zhang S, Qin K (2005) H5N1 Virus outbreak in migratory waterfowl. Nature 436(7048):191CrossRefGoogle Scholar
  3. 3.
    Yu H, Wu JT, Cowling BJ, Liao Q, Fang VJ, Zhou S, Ni MY (2014) Effect of closure of live poultrymarkets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. The Lancet 383(9916):541–548Google Scholar
  4. 4.
    Sallis JF, Frank LD, Saelens BE, Kraft MK (2004) Active transportation and physical activity: opportunities for collaboration on transportation and public health research. Transp Res A Policy Pract 38(4):249–268CrossRefGoogle Scholar
  5. 5.
    Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225CrossRefGoogle Scholar
  6. 6.
    Wilson ME (1995) Travel and the emergence of infectious diseases. Emerg Infect Dis 1(2):39CrossRefGoogle Scholar
  7. 7.
    Martens P, Hall L (2000) Malaria on the move: human population movement and malaria transmission. Emerg Infect Dis 6(2):103CrossRefGoogle Scholar
  8. 8.
    Morens DM, Folkers GK, Fauci AS (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430(6996):242–249CrossRefGoogle Scholar
  9. 9.
    Lederberg J (2000) Infectious history. Science 288(5464):287–293CrossRefGoogle Scholar
  10. 10.
    Dobson AP, Carper ER (1996) Infectious diseases and human population history. Bioscience 46(2):115–126CrossRefGoogle Scholar
  11. 11.
    Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10(12s):S70CrossRefGoogle Scholar
  12. 12.
    Dugas AF, Hsieh Y-H, Levin SR, Pines JM, Mareiniss DP, Mohareb A, Gaydos CA, Perl TM, Rothman RE (2012) Google flu trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis 54(4):463–469CrossRefGoogle Scholar
  13. 13.
    Lazer D, Kennedy R, King G, Vespignani A (2014) The parable of Google flu: traps in big data analysis. Science 343(6176):1203–1205CrossRefGoogle Scholar
  14. 14.
    Ortiz JR, Zhou H, Shay DK, Neuzil KM, Fowlkes AL, Goss CH (2011) Monitoring influenza activity in the United States: a comparison of traditional surveillance systems with Google flu trends. PLoS One 6(4):e18687CrossRefGoogle Scholar
  15. 15.
    Corley CD, Cook DJ, Mikler AR, Singh KP (2010) Text and structural data mining of influenza mentions in web and social media. Int J Environ Res Public Health 7(2):596–615CrossRefGoogle Scholar
  16. 16.
    McCarthy FX (2010) FEMA’s disaster declaration process: a primer. DIANE Publishing, CollingdaleGoogle Scholar
  17. 17.
    Abrahams J (2010) Disaster management in Australia: the national emergency management system. Emerg Med 13(2):165–173CrossRefGoogle Scholar
  18. 18.
    Iakovou E, Douligeris C (2001) An information management system for the emergency management of hurricane disasters. Int J Risk Assess Manag 2(3):243–262(220)CrossRefGoogle Scholar
  19. 19.
    Rodrigues AS, Santos MA, Santos AD, Rocha F (2002) Dam-break flood emergency management system. Water Resour Manag 16(6):489–503CrossRefGoogle Scholar
  20. 20.
    Yang C, Yu M, Hu F, Jiang Y, Li Y (2017) Utilizing Cloud Computing to address big geospatial data challenges. Comput Environ Urban Syst 61:120–128Google Scholar
  21. 21.
    Kun Y, Quan-Li X, Shuang-Yun P, Yan-Bo C (2006) The design and implementation of urban earthquake disaster loss evaluation and emergency response decision support systems based on ArcGIS. In:IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006, pp. 892–895Google Scholar
  22. 22.
    Li YY, Shang XQ, Liu RF (2012) GIS-based emergency management system for chemical Industry Park. Adv Mater Res 550(553):2941–2944CrossRefGoogle Scholar
  23. 23.
    Rashed T, Weeks J (2003) Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. Int J Geogr Inf Sci 17(6):547–576CrossRefGoogle Scholar
  24. 24.
    Shuai XH, Cheng XP, Jiang LX (2001) Earthquake emergency response information system based on ArcView. Earthquake 21(4):94–99Google Scholar
  25. 25.
    Tanasescu V, Gugliotta A, Domingue J, Davies R, Gutiérrez-Villarías L, Rowlatt M, Stincic S (2006) A semantic web services GIS based emergency management application. In: International Semantic Web Conference, pp. 959–966Google Scholar
  26. 26.
    Tzemos S, Burnett RA (1995) Use of GIS in the federal emergency management information system (FEMIS) (No. PNL-SA--26086; CONF-9505242--1). Pacific Northwest Lab., RichlandGoogle Scholar
  27. 27.
    Zhigang L (2010) Liangtian, Wunian Y: research of GIS-based urban disaster emergency management information system. Comput Commun Technol Agric Eng Int Confe 2:484–487Google Scholar
  28. 28.
    Bailey MJ, Dynarski SM (2011) Gains and gaps: changing inequality in US college entry and completion (No. w17633). National Bureau of Economic Research, Washington DCGoogle Scholar
  29. 29.
    Manole A, Fratta P, Houlden H (2014) Recent advances in bulbar syndromes: genetic causes and disease mechanisms. Curr Opin Neurol 27(5):506–514CrossRefGoogle Scholar
  30. 30.
    Hong-zhi P, Ling-bin Y, Yong-shun H (2007) Design and development of emergency and precaution management of public health system based on GIS [J]. Sci Surv Mapp 3:045Google Scholar
  31. 31.
    Nelson EK, Piehler B, Eckels J, Rauch A, Bellew M, Hussey P, Ramsay S, Nathe C, Lum K, Krouse K (2011) LabKey server: an open source platform for scientific data integration, analysis and collaboration. BMC Bioinf 12(1):71CrossRefGoogle Scholar
  32. 32.
    Meng S, Xu G, Wu X, Lei Y, Yan J, Nadin-Davis SA, Liu H, Wu J, Wang D, Dong G et al (2010) Transmission dynamics of rabies in China over the last 40 years: 1969–2009. J Clin Virol 49(1):47–52CrossRefGoogle Scholar
  33. 33.
    Gong W, Jiang Y, Za Y, Zeng Z, Shao M, Fan J, Sun Y, Xiong Z, Yu X, Tu C (2010) Temporal and spatial dynamics of rabies viruses in China and Southeast Asia. Virus Res 150(1–2):111–118CrossRefGoogle Scholar
  34. 34.
    Yu J, Li H, Tang Q, Rayner S, Han N, Guo Z, Liu H, Adams J, Fang W, Tao X et al (2012) The spatial and temporal dynamics of rabies in china. PLoS Negl Trop Dis 6(5):e1640–e1610CrossRefGoogle Scholar
  35. 35.
    Yin C, Zhou H, Wu H, Tao X, Rayner S, Wang S, Tang Q, Liang G (2012) Analysis on factors related to rabies epidemic in China from 2007-2011. Virol Sin 27(2):132–143CrossRefGoogle Scholar
  36. 36.
    Zhang J, Jin Z, Sun GQ, Sun XD, Ruan SG (2012) Modeling seasonal rabies epidemics in China. Bull Math Biol 74(5):1226–1251CrossRefGoogle Scholar
  37. 37.
    Zhang J, Jin Z, Sun G, Zhou T, Ruan S (2011) Analysis of rabies in China: transmission dynamics and control. PLoS One 6(7):e20891–e20899CrossRefGoogle Scholar
  38. 38.
    Song M, Tang Q, Wang D-M, Mo Z-J, Guo S-H, Li H, Tao X-Y, Rupprecht C, Feng Z-J, Liang G-D (2009) Epidemiological investigations of human rabies in China. BMC Infect Dis 9(1):210–218CrossRefGoogle Scholar
  39. 39.
    Yin W, Dong J, Tu C, Edwards J, Guo F, Zhou H, Yu H, Vong S, Rabies T, Advisory B (2013) Challenges and needs for China to eliminate rabies. Infect Dis Poverty 2(1):23CrossRefGoogle Scholar
  40. 40.
    Guo D, Zhou H, Zou Y, Yin W, Yu H, Si Y, Li J, Zhou Y, Zhou X, Magalhães RJS (2013) Geographical analysis of the distribution and spread of human rabies in China from 2005 to 2011. PLoS One 8(8):e72352CrossRefGoogle Scholar
  41. 41.
    Smith DL, Lucey B, Waller LA, Childs JE, Real LA (2002) Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes. Proc Natl Acad Sci U S A 99(6):3668–3672CrossRefGoogle Scholar
  42. 42.
    Lucey BT, Russell CA, Smith D, Wilson ML, Long A, Waller LA, Childs JE, Real LA (2002) Spatiotemporal analysis of epizootic raccoon rabies propagation in Connecticut, 1991-1995. Vector Borne Zoonotic Dis (Larchmont, NY) 2(2):77–86CrossRefGoogle Scholar
  43. 43.
    Guerra MA, Curns AT, Rupprecht CE, Hanlon CA, Krebs JW, Childs JE (2003) Skunk and raccoon rabies in the eastern United States: temporal and spatial analysis. Emerg Infect Dis 9(9):1143–1150CrossRefGoogle Scholar
  44. 44.
    Wilde H, Khawplod P, Khamoltham T, Hemachudha T, Tepsumethanon V, Lumlerdacha B, Mitmoonpitak C, Sitprija V (2005) Rabies control in south and Southeast Asia. Vaccine 23(17–18):2284–2289CrossRefGoogle Scholar
  45. 45.
    Cliquet F, Picard-Meyer E (2004) Rabies and rabies-related viruses: a modern perspective on an ancient disease. Rev Sci Tech 23(2):625–642CrossRefGoogle Scholar
  46. 46.
    Recuenco S, Blanton JD, Rupprecht CE (2012) A spatial model to forecast raccoon rabies emergence. Vector Borne Zoonotic Dis 12(2):126–137CrossRefGoogle Scholar
  47. 47.
    Li X, Feng P, Du Y, Bian G, Yu X (2010) Socioeconomic status is a critical risk factor for human rabies post-exposure prophylaxis. Vaccine 28(42):6847–6851CrossRefGoogle Scholar
  48. 48.
    Haupt W (1999) Rabies--risk of exposure and current trends in prevention of human cases. Vaccine 17(13–14):1742–1749CrossRefGoogle Scholar
  49. 49.
    Fang LX, Ping F, Ping DY, Hui BG, Yan YX (2010) Socioeconomic status is a critical risk factor for human rabies post-exposure prophylaxis. Vaccine 28(42):6847–6851CrossRefGoogle Scholar
  50. 50.
    Gautret P, Shaw M, Gazin P, Soula G, Delmont J, Parola P, Soavi MJ, Brouqui P, Matchett DE, Torresi J (2008) Rabies Postexposure prophylaxis in returned injured travelers from France, Australia, and New Zealand: a retrospective study. J Travel Med 15(1):25–30CrossRefGoogle Scholar
  51. 51.
    Si H, Guo Z-M, Hao Y-T, Liu Y-G, Zhang D-M, Rao S-Q, Lu J-H (2008) Rabies trend in China (1990-2007) and post-exposure prophylaxis in the Guangdong province. BMC Infect Dis 8Google Scholar
  52. 52.
    Suzuki K, Pereira JAC, López R, Morales G, Rojas L, Mutinelli LE, Pons ER (2007) Descriptive spatial and spatio-temporal analysis of the 2000–2005 canine rabies endemic in Santa Cruz de la sierra, Bolivia. Acta Trop 103(3):157–162CrossRefGoogle Scholar
  53. 53.
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649CrossRefGoogle Scholar
  54. 54.
    Guo D, Wu K, Zhang Z, Xiang W (2012) WMS-based flow mapping services. In: 2012 IEEE Eighth World Congress on Services (SERVICES) IEEE Honolulu, pp. 234–241Google Scholar
  55. 55.
    Guo D, Li J, Cao H, Zhou Y (2014) A collaborative large spatio-temporal data visual analytics architecture for emergence response. IOP Conference Series: Earth and Environmental Science 18(1):012129.  https://doi.org/10.1088/1755-1315/18/1/012129
  56. 56.
    Yang C, Goodchild M (2011) Using spatial principles to optimize distributed computing for enabling the physical science discoveries. Proc Natl Acad Sci U S A 108(14):5498–5503CrossRefGoogle Scholar
  57. 57.
    Gray J, Chaudhuri S, Bosworth A, Layman A, Reichart D, Venkatrao M, Pellow F, Pirahesh H (1997) Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min Knowl Disc 1(1):29–53CrossRefGoogle Scholar
  58. 58.
    Chomel B (1993) The modern epidemiological aspects of rabies in the world. Comp Immunol Microbiol Infect Dis 16(1):11–20CrossRefGoogle Scholar
  59. 59.
    Zhang Y, Xiong C, Xiao D, Jiang R, Wang Z, Zhang L, Fu Z (2005) Human rabies in China. Emerg Infect Dis 11(12):1983–1984CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Computer Network Information CenterChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Chinese Center For Disease Control And PreventionBeijingChina

Personalised recommendations