Skip to main content
Log in

Index-supported pattern matching on tuples of time-dependent values

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Lately, the amount of mobility data recorded by GPS-enabled (and other) devices has increased drastically, entailing the necessity of efficient processing and analysis methods. In many cases, not only the geographic position, but also additional time-dependent information are traced and/or generated, according to the purpose of the evaluation. For example, in the field of animal behavior research, besides the position of the monitored animal, biologists are interested in further data like the altitude or the temperature at every measuring point. Other application domains comprise the names of streets, places of interest, or transportation modes that can be recorded along with the geographic position of a person. In this paper, we present in detail a framework for analyzing datasets with arbitrarily many time-dependent attributes. This can be considered as a major extension of our previous work, a comprehensive framework for pattern matching on symbolic trajectories with index support. For an efficient processing of different data types, a variable number of indexes of four different types that correspond to the data types of the attributes are applied. We demonstrate the expressiveness and efficiency of our approach by querying a real dataset representing taxi trips in Rome and, particularly, with a broad series of experiments using trajectories generated by BerlinMOD combined with geological raster data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The definition in [14] has an additional condition requesting that such a function has only a finite number of continuous components, omitted here.

  2. The concept of user-defined set relations was introduced in our previous work, please refer to [36] for details.

  3. Note that in the implementation, variables are represented as integer values for the sake of efficiency. For a better understanding, we chose to use strings in this paper.

  4. The database object fontanaditrevi is a small rectangle around the Trevi Fountain.

  5. Secondo considers the speed of an object in meters per second; 30 m/sec approximately equal 67 mph.

References

  1. de Almeida V T, Güting R H, Behr T (2006) Querying moving objects in Secondo. In: MDM, pp 47–51

  2. Andrienko G L, Andrienko N V, Heurich M (2011) An event-based conceptual model for context-aware movement analysis. Int J Geogr Inf Sci 25(9):1347–1370

    Article  Google Scholar 

  3. Bayer R, McCreight E M (1972) Organization and maintenance of large ordered indices. Acta Inf 1:173–189

    Article  Google Scholar 

  4. Bracciale L, Bonola M, Loreti P, Bianchi G, Amici R, Rabuffi A (2014). CRAWDAD dataset roma/taxi (v. 2014-07-17). Downloaded from http://crawdad.org/roma/taxi/20140717

  5. Chang J W, Song M S, Um J H (2010) Tmn-tree: New trajectory index structure for moving objects in spatial networks. In: CIT, pp 1633–1638

  6. Comer D (1979) Ubiquitous B-Tree. ACM Comput Surv 11(2):121–137

    Article  Google Scholar 

  7. Damiani M L, Issa H, Güting R H, Valdés F (2014) Hybrid queries over symbolic and spatial trajectories: A usage scenario. In: MDM, pp 341–344

  8. Damiani M L, Issa H, Güting R H, Valdés F (2015) Symbolic trajectories and application challenges. SIGSPATIAL Special 7(1):51–58

    Article  Google Scholar 

  9. De La Briandais R (1959) File searching using variable length keys. IRE-AIEE-ACM (Western):295–298

  10. Düntgen C, Behr T, Güting R H (2009) BerlinMOD: a benchmark for moving object databases. VLDB J 18(6):1335–1368

    Article  Google Scholar 

  11. Erwig M, Güting R H, Schneider M, Vazirgiannis M (1999) Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica 3(3):269–296

    Article  Google Scholar 

  12. Forlizzi L, Güting R H, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. In: ACM SIGMOD, pp 319–330

  13. Güting R H, Behr T, Düntgen C (2010) Secondo: a platform for moving objects database research and for publishing and integrating research implementations. IEEE Data Eng Bull 33(2):56–63

    Google Scholar 

  14. Güting R H, Böhlen M H, Erwig M, Jensen C S, Lorentzos N A, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM TODS 25(1):1–42

    Article  Google Scholar 

  15. Güting R H, Schneider M (2005) Moving objects databases morgan kaufmann

  16. Güting R H, Valdés F, Damiani M L (2015) Symbolic trajectories. ACM TSAS 1(2):7:1–7:51

    Google Scholar 

  17. Guttman A (1984) R-trees: A dynamic index structure for spatial searching. In: SIGMOD, pp 47–57

  18. Hadjieleftheriou M, Kollios G, Bakalov P, Tsotras V J (2005) Complex spatio-temporal pattern queries. In: PVLDB, pp 877–888

  19. Hopcroft J E, Motwani R, Ullman J D (2001) Introduction to automata theory, languages, and computation - (2. ed.). Addison-wesley series in computer science Addison-Wesley-Longman

  20. Issa H, Damiani M L (2016) Efficient access to temporally overlaying spatial and textual trajectories. In: IEEE MDM, pp 262–271

  21. (2016). Microsoft: http://research.microsoft.com/en-us/projects/geolife/

  22. du Mouza C, Rigaux P (2004) Multi-scale classification of moving objects trajectories. In: Proceedings on SSDBM, pp 307–316

  23. du Mouza C, Rigaux P (2005) Mobility patterns. GeoInformatica 9(4):297–319

    Article  Google Scholar 

  24. Navarro G, Raffinot M (2002) Flexible pattern matching in strings - practical on-line search algorithms for texts and biological sequences, Cambridge University Press

  25. Newson P, Krumm J (2009) Hidden markov map matching through noise and sparseness. In: ACM SIGSPATIAL. ACM, pp 336–343

  26. Nguyen-Dinh L, Aref W G, Mokbel M F (2010) Spatio-temporal access methods: Part 2 (2003 - 2010). IEEE Data Eng Bull 33(2):46–55

    Google Scholar 

  27. (2016). OpenStreetMap: http://www.openstreetmap.org

  28. Parent C, Spaccapietra S, Renso C, Andrienko G L, Andrienko N V, Bogorny V, Damiani M L, Gkoulalas-Divanis A, de Macêdo J A F, Pelekis N, Theodoridis Y, Yan Z (2013) Semantic trajectories modeling and analysis. ACM Comput Surv 45(4):42

  29. Pelekis N, Theodoridis Y (2014) Mobility data management and exploration springer

  30. Pfoser D, Jensen C S, Theodoridis Y (2000) Novel approaches in query processing for moving object trajectories. In: VLDB, pp 395–406

  31. Quddus M A, Ochieng W Y, Noland R B (2007) Current map-matching algorithms for transport applications: State-of-the art and future research directions. Transportation Research Part C: Emerging Technologies 15(5):312–328

    Article  Google Scholar 

  32. (2016). Secondo website: http://dna.fernuni-hagen.de/Secondo.html

  33. Spaccapietra S, Parent C, Damiani M L, de Macêdo J A F, Porto F, Vangenot C (2008) A conceptual view on trajectories. Data Knowl Eng 65(1):126–146

  34. (2016). U.S. Geological Survey: http://srtm.usgs.gov/

  35. Valdés F, Damiani M L, Güting R H (2013) Symbolic trajectories in Secondo: Pattern matching and rewriting. In: DASFAA, pp 450–453

  36. Valdés F, Güting R H (2014) Index-supported pattern matching on symbolic trajectories. In: ACM SIGSPATIAL, pp 53–62

  37. Valdés F, Güting R H, Ossi F (2016) Efficient trajectory analysis for several time-dependent attributes: A case study for roe deer. In: IEEE MDM, pp 337–340

  38. Vazirgiannis M, Theodoridis Y, Sellis T K (1998) Spatio-temporal composition and indexing for large multimedia applications. Multimedia Syst 6(4):284–298

    Article  Google Scholar 

  39. Vieira M R, Bakalov P, Tsotras V J (2010) Querying trajectories using flexible patterns Proceedings of the EDBT, pp 406–417

    Google Scholar 

  40. Vieira M R, Bakalov P, Tsotras V J (2011) Flextrack: a system for querying flexible patterns in trajectory databases. In: SSTD, pp 475–480

  41. Vlachos M, Gunopulos D, Kollios G (2002) Discovering similar multidimensional trajectories. In: ICDE, pp 673–684

  42. Yan Z, Chakraborty D, Parent C, Spaccapietra S, Aberer K (2013) Semantic trajectories: Mobility data computation and annotation. ACM TIST 4(3):49

    Google Scholar 

  43. Zhang C, Han J, Shou L, Lu J, La Porta T F (2014) Splitter: Mining fine-grained sequential patterns in semantic trajectories. PVLDB 7(9):769–780

    Google Scholar 

  44. Zheng K, Shang S, Yuan N J, Yang Y (2013) Towards efficient search for activity trajectories. In: ICDE, pp 230–241

  45. Zheng Y, Zhou X (eds) (2011) Computing with Spatial Trajectories. Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Valdés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valdés, F., Güting, R.H. Index-supported pattern matching on tuples of time-dependent values. Geoinformatica 21, 429–458 (2017). https://doi.org/10.1007/s10707-016-0286-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0286-6

Keywords

Navigation