, Volume 21, Issue 2, pp 209–229 | Cite as

Vague distance predicates

  • Thomas BittnerEmail author


A formal theory of vague distance predicates is presented which combines a crisp region-based geometry with a theory of vague size predicates in a supervaluation-based formal framework. In the object language of the axiomatic theory, logical and semantic properties of vague distance predicates that are context- and domain-independent are formalized. Context and domain-dependent aspects are addressed in the meta-language of the theory by incorporating context- and domain-specific restrictions on the canonical interpretations. This allows to relate the ontological and qualitative analysis in the object language to numeric values as they are commonly used in scientific discourses.


Vagueness Distance predicates Mereo-geometry Formal ontology Applied ontology 


  1. 1.
    Alexandroff P (1961) Elementary Concepts of Topology. Dover Publications, New York, NYGoogle Scholar
  2. 2.
    Bennett B (1998) Modal Semantics for Knowledge Bases dealing with Vague Concepts. In: Cohn AG, Schubert L, Shapiro S (eds) Principles of Knowledge Representation and Reasoning: Proceedings of the 6th International Conference (KR-98) pp 234–244. Morgan KaufmanGoogle Scholar
  3. 3.
    Bennett B (2001) A Categorical Axiomatisation of Region-Based Geometry. Fuindamenta Informaticae 46:145–158Google Scholar
  4. 4.
    Bennett B, Cohn AG, Torrini P, Hazarika SM (2000) A Foundation for Region-Based Qualitative Geometry. In: Horn W (ed) Proceedings of ECAI 2000, pp 204-208. Berlin, GermanyGoogle Scholar
  5. 5.
    Bittner T (2009) Logical properties of foundational mereogeometrical relations in bio-ontologies. Appl Ontol 4(2):109–138Google Scholar
  6. 6.
    Bittner T (2015) Vague mereogeometryGoogle Scholar
  7. 7.
    Bittner T, Goldberg LJ (2007) The qualitative and time-dependent character of spatial relations in biomedical ontologies. Bioinformatics 23(13):1674–1682CrossRefGoogle Scholar
  8. 8.
    Bittner T (2011) Vague size predicates. Appl Ontol 6(4):317–343Google Scholar
  9. 9.
    Borgo S, Guarino N, Masolo C (1996) A Pointless Theory of Space Based on Strong Connection and Congruence. In: Aiello LC, Doyle J, Shapiro S (eds) Principles of Knowledge Representation and Reasoning (KR96). Morgan Kaufmann, pp 220–229Google Scholar
  10. 10.
    Borgo S, Claudio M (2010) Full Mereogeometries. Review of Symbolic Logic 3(4):521–567CrossRefGoogle Scholar
  11. 11.
    Buchanan BG, Livingston G (2004) Toward Automated Discovery in the Biological Sciences. AI Mag 25(1):69–84Google Scholar
  12. 12.
    Burk F (1997) Lebesgue measure and integration: an introduction. Wiley-IEEEGoogle Scholar
  13. 13.
    Casati R, Varzi AC (1999) Parts and Places. MIT Press, Cambridge MAGoogle Scholar
  14. 14.
    Casati R, Varzi AC (1994) Holes and Other Superficialities. MIT Press, Cambridge MassGoogle Scholar
  15. 15.
    Clark BL (1981) A Calculus of Individuals Based on Connection. Notre Dame Journal of Formal Logic 22(3):204–218CrossRefGoogle Scholar
  16. 16.
    Clementini E, Di Felice P, Hernández D (1997) Qualitative Representation of Positional Information. Artif Intell 95(2):317–356CrossRefGoogle Scholar
  17. 17.
    Cohn AG, Bennett B, Goodday J, Gotts N (1997) Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. geoinformatica 1 (3):1–44CrossRefGoogle Scholar
  18. 18.
    Dague P (1993) Numeric reasoning with relative orders of magnitude. In: Proceedings of the National Conference on Artificial Intelligence, pp 541–547. AAAI pressGoogle Scholar
  19. 19.
    Dague P (1993) Symbolic reasoning with relative orders of magnitude. In: Proceedings 13th Intl. Joint Conference on Artificial Intelligence. Morgan Kaufmann, pp 1509–1515Google Scholar
  20. 20.
    Davis E (1999) Order of Magnitude Comparisons of Distance. Journal of AI Research 10:1–38CrossRefGoogle Scholar
  21. 21.
    De Laguna T (1922) Point, Line, and Surface, as Sets of Solids. J Philos 19 (17):449–461CrossRefGoogle Scholar
  22. 22.
    Egenhofer MJ, Mark DM (1995) Naive Geography. In: Frank AU, Kuhn W (eds) Spatial Information Theory, A Theoretical Basis for GIS, Lecture Notes in Computer Science. Springer-VerlagGoogle Scholar
  23. 23.
    Fine K (1975) Vagueness, Truth and Logic. Synthese 30:265–300CrossRefGoogle Scholar
  24. 24.
    Andrew F (1992) Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. J Vis Lang Comput 3:343–371CrossRefGoogle Scholar
  25. 25.
    Gabbay DM, Hogger CJ, Robinson JA, Siekmann JH, editors (1995) Handbook of Logic in Artificial Intelligence and Logic Programming, vol 4. Oxford University PressGoogle Scholar
  26. 26.
    Gerla G (1994) Pointless Geometries. In: Buekenhout F (ed) Handbook of Incidence Geometry, pp 1015–1031. Elsevier ScienceGoogle Scholar
  27. 27.
    Goodman JE, Pollack R (1993) Allowable Sequences and Order Types in Discrete and Computational Geometry. In: Pach J (ed) New Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics, pp 103–134. Springer-VerlagGoogle Scholar
  28. 28.
    Hernandez D, Clementini E, Di Felice P (1995) Qualitative Distances. In: Frank AU, Kuhn W (eds) Spatial Information Theory, A Theoretical Basis for GIS, LNCS, Semmering, Austria . Springer-VerlagGoogle Scholar
  29. 29.
    Herskowitz A (1986) Language and Spatial Cognition - An Interdisciplinary Study of the Propositions in English. Studies in natural language processing Cambridge University PressGoogle Scholar
  30. 30.
    Hughes GE, Cresswell MJ (2004) A new Introduction to Modal Logic. Routledge, London and New YorkGoogle Scholar
  31. 31.
    Keefe R, Smith P, editors (1996) Vagueness: A Reader MIT PressGoogle Scholar
  32. 32.
    Leonard HS, Goodman N (1940) The Calculus of Induviduals and its Uses. J Symb Log 5:45–55CrossRefGoogle Scholar
  33. 33.
    Mavrovouniotis M, Stephanopoulos G (1988) Formal order-of-magnitude reasoning in process engineering. Comput Chem Eng 12:867–881CrossRefGoogle Scholar
  34. 34.
    Pavelka J (1979) On fuzzy logic i - iii Mathematical Logic QuarterlyGoogle Scholar
  35. 35.
    Pinkal M (1995) Logic and Lexicon. The semantics of the indefinite. Kluwer Academic Publishers, DordrechtGoogle Scholar
  36. 36.
    Raiman O (1991) Order of magnitude reasoning. Artif Intell 51:11–38CrossRefGoogle Scholar
  37. 37.
    Randell DA, Cui Z, Cohn AG (1992) A Spatial Logic Based on Regions and Connection. In: Nebel B, Rich C, Swartout W (eds) Principles of Knowledge Representation and Reasoning. Proceedings of the Third International Conference (KR92), pp 165–176. Morgan KaufmannGoogle Scholar
  38. 38.
    Schlieder C (1995) Reasoning About Ordering. In: Frank AU, Kuhn W (eds) Spatial Information Theory - A Theoretical basis for GIS, volume 988 of LNCS, pp 341–349. Springer-Verlag, Semmering, AustriaGoogle Scholar
  39. 39.
    Schmidtke HR (2003) A Geometry for Places: Representing Extension and Extended Objects. In: Kuhn W, Worboys MF, Timpf S (eds) COSIT, volume 2825 of Lecture Notes in Computer Science, pp 221–238. SpringerGoogle Scholar
  40. 40.
    Schmidtke HR, Woo W (2007) A Size-Based Qualitative Approach to the Representation of Spatial Granularity. In: Veloso MM (ed) IJCAI, pp 563–568Google Scholar
  41. 41.
    Simons P (1987) Parts, A Study in Ontology. Clarendon Press, OxfordGoogle Scholar
  42. 42.
    Smith B (1995) Formal Ontology, Common Sense and Cognitive Science. Int J Hum Comput Stud 43:641–667CrossRefGoogle Scholar
  43. 43.
    Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector A, Rosse C (2005) Relations in Biomedical Ontologies. Genome Biol 6(5):r46CrossRefGoogle Scholar
  44. 44.
    Talmy L (1983) How Language Structures Space. In: Pick H, Acredolo L (eds) Spatial Orientation: Theory, Research, and Application. Plenum Press, New York, NYGoogle Scholar
  45. 45.
    Tarski A (1956) Foundations of the Geometry of Solids. In: Logic, Semantic, Metamathematics. Oxford Clarendon PressGoogle Scholar
  46. 46.
    Tobler W (1970) A Computer Movie Simulating Urban Growth in the Detroit Region. Econ Geogr 46(2):234–240CrossRefGoogle Scholar
  47. 47.
    Wilke G (2014) Equality in approximate tolerance geometry. In: Angelov PP et al (eds) Proceedings of the 7th International Conference Intelligent Systems IEEE IS’2014, vol 322, pp 365– 376. SpringerGoogle Scholar
  48. 48.
    Wilke G (2015) Granular geometry. In: Seising R, Trillas E, Kacprzyk J (eds) Towards the Future of Fuzzy Logic, volume 325 of Studies in Fuzziness and Soft Computing, pp 79–115. SpringerGoogle Scholar
  49. 49.
    Williamson T (1999) On the structure of higher-order vagueness. Mind 108:127–143CrossRefGoogle Scholar
  50. 50.
    Wos L, Overbeek R, Lusk R, Boyle J (1992) Automated Reasoning Introduction and Applications. McGraw-HillGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departments of PhilosophyGeography State University of New York at BuffaloBuffaloUSA

Personalised recommendations