Skip to main content
Log in

Probabilistic spatio-temporal resource search

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

In this paper, we deal with the resource search problem in a probabilistic setting. In a resource search problem, there are spatially located static resources and a mobile agent. The agent looks to obtain one of the resources while minimizing the cost. This cost may consist of different types of costs the agent has to pay, from travel time to the cost of obtaining a certain resource. We assume that the agent has no knowledge of exact availability of the resources in real-time, but some prior or partial data gives estimations of this information. This model applies to many situations that arise in urban transportation systems, such as drivers looking for street parking, taxis looking for new customers, and electric vehicles looking for charging stations. Our approach to the resource search problem only employs uncertain information about resource availability, minimizes the expected cost, and utilizes concepts from decision theory. A simulation that uses real-world data is used to compare our approach to alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://sfpark.org/

  2. The uncertain data may be obtained from historical data, partial real-time data, or a combination of both. One example is Xu et al. [22], where the authors used a crowdsourcing approach to approximate the parking availability per block. Another example is Mathur et al. [15], where the authors proposed using existing municipal vehicles equipped with GPS receivers and ultrasonic sensors to detect on-street parking availability.

  3. Observe that the paths do not have to be Hamiltonian. In other words, an edge is allowed to be visited multiple times, because an unavailable edge (i.e. an edge that does not have an available resource) may later become available.

  4. Assume that the infinite path is \(\{e_{{0}} \rightarrow e_{{1}} \rightarrow {\cdots } \}\), then the overall probability of getting at least one available resource along it, is \(p = 1-{\prod }_{{i}=1}^{\infty } (1-p_{{i}}) = 1\), where p i is the probability of finding a resource on edge e i .

  5. “s.t.” is short for “such that”.

  6. As a special case, Theorem 2 holds when all usage costs are zero (uc ij = 0 for all edges). In the case of parking this means that the walking time is negligible compared to driving time, which is certainly true when the objective function to minimize is, for example, pollution.

  7. The proof of Theorem 2 applies to Eq. 21 as well.

  8. The distance between vectors is measured by max norm. The max norm of \(\boldsymbol {V} = \{V_{1}, \dots , V_{n}\}\) is defined as \(\displaystyle ||\boldsymbol {V}|| = \max\limits _{1 \leq i \leq n} \{|V_{i}|\}\).

  9. It can be verified that for max norm, the triangle inequality ||U + V||≤||U||+||V|| holds.

  10. There is no equivalence of Eq. 5 for PM. This is because in PM, the agent should obtain the first resource that is found available.

  11. Note that in Fig. 4, the GCM curve is below the GCM-m curve. They appear close due to the larger scale of the vertical axis.

  12. We let \({\prod }_{j=1}^{0}{\left (1-p_{{j-1}, {j}}\right )} = 1\) for the convenience of notation.

References

  1. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2011) Parking slot assignment games. In: Proc. of the 19th Intl. conf. on advances in geographic information systems (ACM SIGSPATIAL GIS 2011). Chicago

  2. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2012) Parking in competitive settings: a gravitational approach. In: Proc. of 13th Intl. conf. on mobile data management (MDM). Bengaluru

  3. Ayala D, Wolfson O, Xu B, DasGupta B, Lin J (2012) Spatio-temporal matching algorithms for road networks. In: 20th Int. conf. on advances in geografic information systems (ACM SIGSPATIAL GIS). Redondo Beach

  4. Boehlé J, Rothkrantz L, van Wezel M (2008) Cbprs: a city based parking and routing system. ERIM Report Series Reference No. ERS-2008-029-LIS

  5. Delot T, Ilarri S, Lecomte S, Cenerario N (2013) Sharing with caution: managing parking spaces in vehicular networks. Mob Inf Syst 9:69–98

    Google Scholar 

  6. Geng Y, Cassandras CG (2011) A new “smart parking” system based on optimal resource allocation and reservations. In: Proc. of 14th Intl. conf. on intelligent transportation systems (ITSC). Washington

  7. Guo Q, Wolfson O (2015) Presents: probabilistic resource-search networks. In: Proceedings of the 23rd ACM SIGSPATIAL international conference on advances in geographic information systems, SIGSPATIAL ’15. ACM

  8. Guo Q, Wolfson O (2016) Finding geospatial resources using uncertain data. In: Proc. of 17th Intl. conf. on mobile data management, MDM ’16

  9. Guo Q, Wolfson O, Ayala D (2015) A framework on spatio-temporal resource search. In: 2015 11th International wireless communications and mobile computing conference (IWCMC)

  10. Jossé G, Schmid KA, Schubert M (2015) Probabilistic resource route queries with reappearance. In: Proceedings of the 18th international conference on extending database technology, EDBT ’15, pp 445–456

  11. Jossé G, Schubert M, Kriegel H-P (2013) Probabilistic parking queries using aging functions. In: Proc. of the 21st ACM SIGSPATIAL Int. conf. on advances in geographic information systems, SIGSPATIAL’13. ACM, Orlando, pp 442–445

    Google Scholar 

  12. Kühne R (2003) Potential of remote sensing for traffic applications. In: Proceedings of IEEE intelligent transportation systems

  13. Ma S, Wolfson O, Xu B (2014) Updetector: sensing parking/unparking activities using smartphones. In: Proc. of 7th Int. Workshop on computational transportation science (IWCTS)

  14. Ma S, Zheng Y, Wolfson O (2013) T-share: a large-scale dynamic taxi ridesharing service. In: Proceedings of the 29th IEEE int. conf. on data engineering (ICDE)

  15. Mathur S, Jin T, Kasturirangan N, Chandrashekharan J, Xue W, Gruteser M, Trappe W Parknet: drive-by sensing of road-side parking statistics. In: MobiSys. San Francisco

  16. Nawaz S, Efstratiou C, Mascolo C (2013) Parksense: a smartphone based sensing system for on-street parking. In: Proc. of the 19th Annual int. conf. on mobile computing and networking (MobiCom). ACM, pp 75–86

  17. Panja B, Schneider B, Meharia P (2011) Wirelessly sensing open parking spaces: accounting and management of parking facility. In: AMCIS 2011 Proceedings

  18. Russell S, Norvig P (2003) Artificial intelligence: a modern approach, 2nd edn. Prentice Hall

  19. Safra E, Kanza Y, Dolev N, Sagiv Y, Doytsher Y (2007) Computing a k-route over uncertain geographical data. In: Papadias D, Zhang D, Kollios G (eds) Advances in spatial and temporal databases, volume 4605 of lecture notes in computer science. Springer, Berlin Heidelberg, pp 276–293

  20. Verroios V, Efstathiou V, Delis A (2011) Reaching available public parking spaces in urban environments using ad-hoc networking. In: IEEE Intl. conf. on mobile data management (MDM)

  21. Wolfson O, Xu B (2004) Opportunistic dissemination of spatio-temporal reseource information in mobile peer-to-peer networks. In: Proc. of 1st Int. workshop on P2P data management, security and trust (PDMST’04), DEXA Workshops 2004. Zaragoza, pp 954–958

  22. Xu B, Wolfson O, Yang J, Stenneth L, Yu PS (2013) Real time street parking availability estimation. In: Proc. of 14th Intl. conf. on mobile data management (MDM). Milan

  23. Yoon JW, Pinelli F, Calabrese F (2012) Cityride: a predictive bike sharing journey advisor. In: Proc. of 13th Intl. conf. on mobile data management (MDM). Bengaluru

  24. Yuan NJ, Zheng Y, Zhang L, Xie X (2013) T-finder: a recommender system for finding passengers and vacant taxis. In: IEEE Transactions on knowledge and data engineering

Download references

Acknowledgments

This work was supported in part by the NSF under grants IIS-1213013 and IIP-1534138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Guo.

Appendix:: Proofs

Appendix:: Proofs

Proof Proof for Theorem 1

First, we define some notation. Let \(({C_{i}^{k}})'\) denote the expect cost (not necessarily the minimum) of any possible path with k-step look-ahead from node v i . Let \((C_{ij}^{k})'\) denote the expected cost (not necessarily the minimum) of any possible path with k-step look-ahead given that v i and v j are the first two nodes of the path.

When k=0, \(\forall i = 1, \dots , n\), \({C_{i}^{0}} = \beta _{i}\) is the only possible expected cost for the zero-length path starting from v i . Therefore \({C_{i}^{0}}\) is the minimum.

Assume that when k = k 0−1, \(\forall i = 1, \dots , n\), \(C^{k_{0}-1}_{i}\) is the minimum expected general cost for all paths starting at v i with length k 0−1 or less. That is, C i k 0−1≤(C i k 0−1).

Then, when k = k 0, for any given v i , we consider two categories of possible successor nodes for v i (\(\{v_{j^{\prime }}\}\) and \(\{v_{j^{\prime \prime }}\}\)):

  1. 1)

    \(\forall j^{\prime }\) such that \(e_{ij^{\prime }}\) exists and \(\mathit {uc}_{ij^{\prime }} \leq C^{k_{0}-1}_{j^{\prime }}\).

By Eq. 3,

$$C^{k_{0}}_{ij^{\prime}} = \mathit{tc}_{ij^{\prime}} + p_{ij^{\prime}} \ \mathit{uc}_{ij^{\prime}} + (1-p_{ij^{\prime}})C^{k_{0}-1}_{j^{\prime}} .$$

Because \(\mathit {uc}_{ij^{\prime }} \leq C^{k_{0}-1}_{j^{\prime }} \leq (C^{k_{0}-1}_{j^{\prime }})'\), by Eq. 21,

$$(C^{k_{0}}_{ij^{\prime}})' = \mathit{tc}_{ij^{\prime}} + p_{ij^{\prime}} \ \mathit{uc}_{ij^{\prime}} + (1-p_{ij^{\prime}})(C^{k_{0}-1}_{j^{\prime}})' .$$

Clearly, \(C^{k_{0}}_{ij^{\prime }} \leq (C^{k_{0}}_{ij^{\prime }})'\).

  1. 2)

    \(\forall j^{\prime \prime }\) such that \(e_{ij^{\prime \prime }}\) exists and \(\mathit {uc}_{ij^{\prime \prime }} > C^{k_{0}-1}_{j^{\prime \prime }}\).

By Eq. 3,

$$C^{k_{0}}_{ij^{\prime\prime}} = \mathit{tc}_{ij^{\prime\prime}} + C^{k_{0}-1}_{j^{\prime\prime}} .$$

The relationship between \(\mathit {uc}_{ij^{\prime \prime }}\) and \((C^{k_{0}-1}_{j^{\prime \prime }})'\) in this second case can be either way.

  1. a)

    When \(\mathit {uc}_{ij^{\prime \prime }} \leq (C^{k_{0}-1}_{j^{\prime \prime }})'\), by Eq. 21,

    $$(C^{k_{0}}_{ij^{\prime\prime}})' = \mathit{tc}_{ij^{\prime\prime}} + p_{ij^{\prime\prime}} \ \mathit{uc}_{ij^{\prime\prime}} + (1-p_{ij^{\prime}})(C^{k_{0}-1}_{j^{\prime\prime}})' .$$

In this case, \(C^{k_{0}}_{ij^{\prime \prime }} \leq (C^{k_{0}}_{ij^{\prime \prime }})'\) because \( C^{k_{0}-1}_{j^{\prime \prime }} < \mathit {uc}_{ij^{\prime \prime }}\) and \( C^{k_{0}-1}_{j^{\prime \prime }} \leq (C^{k_{0}-1}_{j^{\prime \prime }})'\).

  1. b)

    When \(\mathit {uc}_{ij^{\prime \prime }} > (C^{k_{0}-1}_{j^{\prime \prime }})'\), by Eq. 21,

    $$(C^{k_{0}}_{ij^{\prime\prime}})' = \mathit{tc}_{ij^{\prime\prime}} + (C^{k_{0}-1}_{j^{\prime\prime}})' .$$

In this case, again \(C^{k_{0}}_{ij^{\prime \prime }} \leq (C^{k_{0}}_{ij^{\prime \prime }})'\).

Integrating cases 1) and 2), we can conclude that ∀j such that e i j exists, C i j k 0≤(C i j k 0). Therefore, by Eq. 2, ∀j such that e i j exists, \(C^{k_{0}}_{i} \leq \min\limits \left \{ C^{k_{0}}_{ij}, \beta _{i} \right \} \leq \min\limits \left \{ (C^{k_{0}}_{ij})', \beta _{i}\right \}\). Because {v j } here covers all possible successors of v i , we can get C i k 0≤(C i k 0).

By induction, we can reach the conclusion that \({C^{k}_{i}}\) is the minimum expected general cost for all paths starting at v i with length K or less, in other words, \({C_{i}^{K}} \leq ({C_{i}^{K}})'\).

The time complexity O(n d K) is a direct result of applying Eqs. 2 and 3 for dynamic programming (refer to Algorithm 1). □

Proof Proof for Theorem 2

When k=0, ∀i,j such that e i j exists, by Eq. 2, \(\mathit {uc}_{ij} \leq \beta _{j} = {C^{0}_{j}}\).

Assume that when k = k 0−1, ∀i,j such that e i j exists, it holds that u c i j C j k 0−1, then for k = k 0 and any given i, ∀j such that e i j exists, by Eq. 3:

$$\begin{array}{@{}rcl@{}} C^{k_{0}}_{ij} &= & \mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij} + (1-p_{ij})C^{k_{0}-1}_{j} \\ &\geq & \mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij} + (1-p_{ij})\mathit{uc}_{ij}\\ &\geq & \mathit{uc}_{ij} \end{array} $$

Therefore,

$$\begin{array}{@{}rcl@{}} C^{k_{0}}_{i} &= & \displaystyle\min\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}}\left\{C^{k_{0}}_{ij}, \ \beta_{i} \right\} \\ &\geq & \mathit{uc}_{ij} \end{array} $$

This can be rewritten as u c i j = u c j i C j k 0.

By induction, we can get the conclusion in the theorem. □

The following lemma is necessary to prove Lemma 1:

Lemma 5

Let {a i }, {b i }, \(i = 1,2,\dots ,n\) be two real sequences with the same length n, then

$$\displaystyle\left|\min\limits_{1\leq i \leq n} \{a_{i}\} - \min\limits_{1\leq i \leq n} \{b_{i}\}\right| \leq \max\limits_{1\leq i \leq n} \{|a_{i}-b_{i}|\}.$$

Proof

$$\begin{array}{@{}rcl@{}} \min\limits_{1 \leq i \leq n}\{a_{i}\} - \min\limits_{1 \leq i \leq n}\{b_{i}\} &= & \max\limits_{1 \leq i \leq n}\left\{\min\limits_{1 \leq j \leq n}\{a_{j}\} - b_{i} \right\} \\ &\leq & \max\limits_{1 \leq i \leq n}\{a_{i} - b_{i}\} \\ &\leq & \max\limits_{1\leq i \leq n} \{|a_{i}-b_{i}|\} . \end{array} $$
$$\begin{array}{@{}rcl@{}} \min\limits_{1 \leq i \leq n}\{a_{i}\} - \min\limits_{1 \leq i \leq n}\{b_{i}\} &= & \min\limits_{1 \leq i \leq n}\left\{a_{i} - \min\limits_{1 \leq j \leq n}\{b_{j}\} \right\} \\ &\geq & \min\limits_{1 \leq i \leq n}\{a_{i} - b_{i}\} \\ &= & - \max\limits_{1\leq i \leq n} \{-(a_{i}-b_{i})\} \\ &\geq & - \max\limits_{1\leq i \leq n} \{|a_{i}-b_{i}|\} . \end{array} $$

From these, we can get the inequality in the lemma. □

Proof Proof for Lemma 1

Firstly, we prove that \(\forall 1\leq i \leq n, |C^{k+1}_{i} - C^{k^{\prime }+1}_{i}| \leq \gamma ||\boldsymbol {C^{k}}-\boldsymbol {C^{k^{\prime }}}||\) using Lemma 5 and Eqs. 2 and 11:

$$\begin{array}{@{}rcl@{}} && |C^{k+1}_{i} - C^{k^{\prime}+1}_{i}| \\ &&\qquad = \left|\min\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}}\left\{\mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij}+(1-p_{ij}){C^{k}_{j}}, \ \beta_{i} \right\} \right.\\ &&\qquad\quad \left. -\min\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}}\left\{\mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij}+(1-p_{ij})C^{k^{\prime}}_{j}, \ \beta_{i} \right\}\right| \\ &&\qquad \leq \max\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}} \left\{\left| (\mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij}+(1-p_{ij}){C^{k}_{j}}) \vphantom{C^{k^{\prime}}_{j}} \right.\right. \\ &&\qquad\quad \left.\left. -(\mathit{tc}_{ij} + p_{ij} \ \mathit{uc}_{ij}+(1-p_{ij})C^{k^{\prime}}_{j}) \right|, \ 0 \right\} \\ &&\qquad = \max\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}} \left\{ (1-p_{ij}) \left|{C^{k}_{j}}-C^{k^{\prime}}_{j} \right| \right\} \\ && \qquad \leq \max\limits_{\forall j, \text{ s.t.\ } e_{ij} \text{ exists}} \left\{ (1-p_{\mathit{min}}) \left|{C^{k}_{j}}-C^{k^{\prime}}_{j} \right| \right\} \\ && \qquad\leq (1-p_{\mathit{min}}) \max\limits_{1\leq j \leq n} \left\{\left|{C^{k}_{j}}-C^{k^{\prime}}_{j} \right|\right\} \\ &&\qquad = \gamma ||\boldsymbol{C^{k}}-\boldsymbol{C^{k^{\prime}}}|| . \end{array} $$

Therefore,

$$\begin{array}{@{}rcl@{}} &&||\boldsymbol{C^{k+1}}-\boldsymbol{C^{k^{\prime}+1}}|| \\ && \qquad= \max\limits_{1\leq i \leq n} \left\{\left|C^{k+1}_{i} - C^{k^{\prime}+1}_{i} \right|\right\} \\ && \qquad \leq \gamma ||\boldsymbol{C^{k}}-\boldsymbol{C^{k^{\prime}}}|| . \end{array} $$

Proof Proof for Lemma 2

Note that because ∀i,j such that e i j exists, u c i j = u c j i β i , by Theorem 2, Eq. 21 only presents its first case. By expanding the recursion in Eq. 21, the expected cost of this path isFootnote 12

$$\begin{array}{@{}rcl@{}} &&{} C_{\{v_{0} \rightarrow v_{1} \rightarrow \cdots\} }\\ && = {\sum}_{k=1}^{\infty}{\left( \left( \mathit{tc}_{{k-1}, {k}} + \mathit{uc}_{{k-1}, {k}} \cdot p_{{k-1}, {k}}\right) {\prod}_{j=1}^{k-1}{\left( 1-p_{{j-1}, {j}}\right)} \right)} + \lim_{k \to \infty}{\left( \beta_{{k}} {\prod}_{j=1}^{k}{\left( 1-p_{{j-1}, {j}}\right)} \right)} \\ && \leq {\sum}_{k=1}^{\infty}{\left( \left( \mathit{tc}_{\mathit{max}} + \mathit{uc}_{\mathit{max}} \cdot p_{\mathit{max}}\right) \left( 1-p_{\mathit{min}}\right)^{k-1} \right)} + \beta_{\mathit{max}} \lim_{k \to \infty}{\left( 1-p_{\mathit{min}}\right)^{k}}\\ && =\ \frac{\mathit{tc}_{\mathit{max}} + \mathit{uc}_{\mathit{max}} \cdot p_{\mathit{max}} }{p_{\mathit{min}}} . \end{array} $$

Proof Proof for Lemma 4

Using Lemma 1 and the triangle inequality of max norm, we get

$$\begin{array}{@{}rcl@{}} && ||\boldsymbol{C^{k+1}}-\boldsymbol{C}|| \\ &&\qquad \leq (1-p_{\mathit{min}}) ||\boldsymbol{C^{k}}-\boldsymbol{C}||\\ &&\qquad \leq (1-p_{\mathit{min}}) ||\boldsymbol{C^{k+1}}-\boldsymbol{C^{k}}|| + (1-p_{\mathit{min}}) ||\boldsymbol{C^{k+1}}-\boldsymbol{C}|| \\ &&\qquad \leq \epsilon_{0} \ p_{\mathit{min}} + (1-p_{\mathit{min}}) ||\boldsymbol{C^{k+1}}-\boldsymbol{C}||, \end{array} $$

which implies ||C k+1C||≤𝜖 0. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Wolfson, O. Probabilistic spatio-temporal resource search. Geoinformatica 22, 75–103 (2018). https://doi.org/10.1007/s10707-016-0275-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-016-0275-9

Keywords

Navigation