, Volume 21, Issue 2, pp 351–364 | Cite as

Operations to support temporal coverage aggregates over moving regions

  • Mark McKenneyEmail author
  • Roger Frye
  • Zachary Benchly
  • Logan Maughan


A temporal coverage operation computes the duration that a moving object covers a spatial area. We extend this notion into temporal coverage aggregates, in which the spatial area covered for a maximum or minimum amount of time by a moving region, or set of moving regions, is discovered. We define the max temporal aggregate coverage operation and the min temporal aggregate coverage operation. We provide an algorithm to compute these operations, and show that it is correct. Finally, the algorithm is implemented in the open source, Pyspatiotemporalgeom library to verify the algorithm under a variety of test cases.


Spatiotemporal data Moving regions Data models Aggregate operations 


  1. 1.
    Beckmann N, Kriegel H, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. SIGMOD Rec 19(2):322–331CrossRefGoogle Scholar
  2. 2.
    Chazelle B, Edelsbrunner H, Guibas L, Sharir M (1992) Diameter, width, closest line pair, and parametric searching. In: Symposium on computational geometry. ACM, pp 120–129Google Scholar
  3. 3.
    Cotelo Lema JA, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving objects databases. Comput J 46(6):680–712. doi: 10.1093/comjnl/46.6.680.
  4. 4.
    Forlizzi L, Güting RH, Nardelli E, Schneider M (2000) A data model and data structures for moving objects databases. SIGMOD Rec 29(2):319–330. doi: 10.1145/335191.335426 CrossRefGoogle Scholar
  5. 5.
    Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42CrossRefGoogle Scholar
  6. 6.
    Guttman A (1984) R-trees: a Dynamic Index Structure for Spatial Searching. In: ACM. doi: 10.1145/602259.602266, NY, USA, pp 47–57
  7. 7.
    Kim KS, Zettsu K, Kidawara Y, Kiyoki Y (2009) Moving phenomenon: Aggregation and analysis of geotime-tagged contents on the web. In: Web and wireless geographical information systems. Springer, pp 7–24Google Scholar
  8. 8.
    Lazaridis I, Mehrotra S (2001) Progressive approximate aggregate queries with a multi-resolution tree structure. SIGMOD Rec 30(2):401–412CrossRefGoogle Scholar
  9. 9.
    Lema J, Forlizzi L, Güting RH, Nardelli E, Schneider M (2003) Algorithms for moving objects databases, vol 46Google Scholar
  10. 10.
    Lopez I, Snodgrass R, Moon B (2005) Spatiotemporal aggregate computation: a survey. IEEE Trans Knowl Data Eng 17(2):271–286CrossRefGoogle Scholar
  11. 11.
    McKenney M (2016) Pyspatiotemporalgeom package. Version, Accessed: 2016-01-14
  12. 12.
    McKenney M (2016) Pyspatiotemporalgeom source code. Version, Accessed: 2016-01-14
  13. 13.
    McKenney M, Frye R, Benchly Z, Maughan L (2014) Temporal coverage aggregates over moving region streams. In: Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming, IWGS ’14. doi: 10.1145/2676552.2676555. ACM, NY, USA, pp 21–24
  14. 14.
    McKenney M, Viswanadham SC, Littman E (2014) The cmr model of moving regions. In: Proceedings of the 5th ACM SIGSPATIAL international workshop on geostreaming. ACM, pp 62–71Google Scholar
  15. 15.
    Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient olap operations in spatial data warehouses. In: Proceedings of the international symposium on advances in spatial and temporal databasesGoogle Scholar
  16. 16.
    Schneider M, Behr T (2006) Topological relationships between complex spatial objects. ACM Trans Database Syst 31(1):39–81CrossRefGoogle Scholar
  17. 17.
    Sellis T, Roussopoulos N, Faloutsos C (1987) The r+-tree: a dynamic index for multi-dimensional objects. In: Proceedings of the international conference on very large data basesGoogle Scholar
  18. 18.
    Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. In: Proceedings of the Thirteenth International Conference on Data Engineering, ICDE ’97. IEEE Computer Society, DC, USA, pp 422–432
  19. 19.
    Tao Y, Papadias D (2005) Historical spatio-temporal aggregation. ACM Trans Inf Syst (TOIS) 23(1):61–102CrossRefGoogle Scholar
  20. 20.
    Timko I, Böhlen M, Gamper J (2011) Sequenced spatiotemporal aggregation for coarse query granularities. VLDB J 20(5):721–741CrossRefGoogle Scholar
  21. 21.
    Worboys MF (1994) A unified model for spatial and temporal information. Comput J 37(1):26–34. doi: 10.1093/comjnl/37.1.26.
  22. 22.
    Zhang D, Tsotras VJ (2001) Improving min/max aggregation over spatial objects. In: Proceedings of the 9th ACM international symposium on advances in geographic information systems, GIS ’01Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark McKenney
    • 1
    Email author
  • Roger Frye
    • 1
  • Zachary Benchly
    • 1
  • Logan Maughan
    • 1
  1. 1.Department of Computer ScienceSouthern Illinois University EdwardsvilleEdwardsvilleUSA

Personalised recommendations