Advertisement

GeoInformatica

, Volume 20, Issue 1, pp 59–94 | Cite as

Spatio-temporal traffic video data archiving and retrieval system

  • Hang YueEmail author
  • Laurence R. Rilett
  • Peter Z. Revesz
Article

Abstract

This paper presents a transportation spatio-temporal system that efficiently converts traffic video data into vehicular motion information in spatio-temporal databases for a variety of transportation applications. The proposed transportation spatio-temporal system interpolates the vehicle trajectory data (i.e., time, location, and speed), which are extracted from video, and integrates them with spatial road information for storage of dynamic transportation environments. The proposed transportation spatio-temporal system can mitigate data storage and retrieval issues related to storing large amounts of traffic video. Moreover, users can manage and operate multiform and multidimensional traffic data in a spatio-temporal transportation environment. The proposed approach is demonstrated for typical transportation applications. The experimental results show that the proposed transportation spatio-temporal system has excellent potential for addressing issues related to storage of large amounts of traffic video data.

Keywords

GIS Spatio-temporal database Vehicular speed interpolation Cubic-spline Local polynomial regression Traffic video 

Notes

Acknowledgments

The authors gratefully acknowledge Elizabeth G. Jones for her comments about Fig. 7 and pointing out some related references.

References

  1. 1.
    Miller HJ (1999) Potential contributions of spatial analysis to geographic information systems for transportation. Geogr Anal 31:373–399CrossRefGoogle Scholar
  2. 2.
    Butler AJ, Dueker KJ (2001) Implementing the enterprise GIS in transportation database design. URISA J 13(1)Google Scholar
  3. 3.
    Roess RP, Prassas ES, McShane WR (2011) Traffic Engineering, 4th edn. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  4. 4.
    Gong Y (2003) Audio and visual content summarization of a video program, chapter 10. In: Furht B, Marques O (eds) Handbook of video databases: design and applicationsGoogle Scholar
  5. 5.
    Wactlar HD, Christel MG, Gong Y, Hauptmann AG (1999) Lessons learned from building a terabyte digital video library. IEEE Comput 32:66–73CrossRefGoogle Scholar
  6. 6.
    Aslandogan YA, Yu CT (1999) Techniques and systems for image and video retrieval. IEEE Trans Knowl Data Eng 11:56–63CrossRefGoogle Scholar
  7. 7.
    Agma J, Traina M, Traina C Jr. (2003) Similarity search in multimedia databases, chapter 29. In: Furht B, Marques O (eds) Handbook of video databases: design and applications, pp. 712–245Google Scholar
  8. 8.
    Li L, Revesz PZ (2004) Interpolation methods for spatiotemporal geographic data. Comput Environ Urban Syst 28(3):201–227CrossRefGoogle Scholar
  9. 9.
    Revesz PZ (2010) Introduction to database: from biological to spatio-temporal. Springer, New YorkCrossRefGoogle Scholar
  10. 10.
    Chen CX (2001) Data models and query languages of spatio-temporal information. Ph.D. Dissertation, University of California, Los Angeles, CAGoogle Scholar
  11. 11.
    Yue H (2009) Advanced traveler information inquiry, archiving, and decision making system, the 4th Chinese Oversea Student “Chun Hui Cup” Entrepreneurship Competition, Project PresentationGoogle Scholar
  12. 12.
    Yin H, Wolfson O (2004) A weight-based map matching method in moving objects databases, the 16th International Conference on Scientific and Statistical Database ManagementGoogle Scholar
  13. 13.
    Liu J, Wolfson O, Yin H (2006) Extracting semantic location from outdoor positioning systems. International Workshop on Managing Context Information and Semantics in Mobile EnvironmentsGoogle Scholar
  14. 14.
    Cambridge Systematics, Inc. (2005) NGSIM U.S. 101 data analysis (7:50 a.m. to 8:05 a.m.), Prepared for Federal Highway AdministrationGoogle Scholar
  15. 15.
    Wei H, Feng C, Meyer E, Lee J (2005) Video-capture-based approach to extract multiple vehicular trajectory data for traffic modeling. J Transp Eng 131(7):496–505CrossRefGoogle Scholar
  16. 16.
    Skabardonis A, Alexiadis V (2005) Traffic data through the Berkeley highway laboratory. Workshop on Traffic Modeling, Sedona, AZGoogle Scholar
  17. 17.
    Kim Z, Gomes G, Hranac R, Skabardonis A (2005) A machine vision system for generating vehicle trajectories over extended freeway segments, the 12th World Congress on Intelligent Transportation SystemsGoogle Scholar
  18. 18.
    Tao RH, Wei H, Wang YH, Sisiopiku VP (2004) Modeling speed disturbance absorption following state-control action-expected chains: integrated car-following and lane-changing scenarios, the 83rd Annual Meeting of Transportation Research, Washington, D.CGoogle Scholar
  19. 19.
    Wei H (1999) Observed lane-choice and lane-changing behaviors on an urban street network using video-capture-based approach and suggested structures of their models. Ph.D. dissertation, Univ. of Kansas, KSGoogle Scholar
  20. 20.
    U.S. Department of Transportation, Federal Highway Administration (2007) NGSIM-VIDEO user’s manual, Publication No. #FHWA-HOP-07-009Google Scholar
  21. 21.
    Patamanska G, Slavov N (2007) Using cubic spline interpolation to estimate vertical soil water profile. Bulg J Agric Sci 13:317–323Google Scholar
  22. 22.
    Boyko A, Pavlova V (1986) Restoration of soil moisture reserve profile using spline interpolation instrument. Tr VNISKHM 21:102–111Google Scholar
  23. 23.
    Thant A, Khaing A (2009) Application of cubic spline interpolation to walking patterns of biped robot. World Acad Sci Eng Technol 50:27–34Google Scholar
  24. 24.
    Su B, Tan J (2007) Sweeping surface generated by a class of generalized quasi-cubic interpolation spline. Int Conf Comput Sci (2):41–48Google Scholar
  25. 25.
    Dubau C (2011) Optimal property of the shape of aeolian blade profile using cubic splines. J Comput Anal Appl 13(1):254Google Scholar
  26. 26.
    Recktenwald G (2000) Numerical methods with MATLAB: implementation and application. Prentice Hall, Upper Saddle RiverGoogle Scholar
  27. 27.
    Guo D, Liu S, Jin H (2010) A graph-based approach to vehicle trajectory analysis. J Locat Based Serv 4:183–199. doi: 10.1080/17489725.2010.537449 CrossRefGoogle Scholar
  28. 28.
    Liu S, Liu C, Luo Q, Ni L, Krishnan R (2012) Calibrating large scale vehicle trajectory data. Living Analytics Research Center (LARC), Technical Report Series: LARC-TR-01-12Google Scholar
  29. 29.
    Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can Cartographer 10:112–122CrossRefGoogle Scholar
  30. 30.
    Jeung H, Yiu ML, Zhou X, Jensen CS, Taoshen H (2008) Discovery of convoys in trajectory databases. VLDB Endowment 1:1068–1080CrossRefGoogle Scholar
  31. 31.
    Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, ACM Press, pp 593–604Google Scholar
  32. 32.
    Rinzivillo S, Pedreschi D, Nanni M, Giannotti F, Andrienko N, Andrienko G (2008) Visually driven analysis of movement data by progressive clustering. Inf Vis 7:225–239CrossRefGoogle Scholar
  33. 33.
    Gindele T, Brechtel S, Dillmann R (2010) A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments, the 13th International IEEE Annual Conference on Intelligent Transportation Systems, Madeira Island, PortugalGoogle Scholar
  34. 34.
    Egerstedt M, Martin CF (2001) Optimal trajectory planning and smoothing splines. Automatica 37:1057–1064CrossRefGoogle Scholar
  35. 35.
    Shcherbakov MV, Brebels A (2011) Outliers and anomalies detection based on neural networks forecast procedure. In: Proceedings of the 31st Annual International Symposium on Forecasting, ISF-2011, pp 21–22Google Scholar
  36. 36.
    Pham-GIA T, Hung TL (2001) The mean and median absolute deviation. Math Comput Model 34:921–936CrossRefGoogle Scholar
  37. 37.
    Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VA (2013) A survey of forecast error measures. World Appl Sci J 24 (Information Technologies in Modern Industry, Education & Society):171–176, ISSN 1818–4952Google Scholar
  38. 38.
    Rousseeuwa PJ, Crouxa C (1993) Alternatives to the median absolute deviation. J Am Stat Assoc 88(424):1273–1283CrossRefGoogle Scholar
  39. 39.
    Highway Capacity Manual (2000) Transportation Research Board; Bk&CD-Rom edition, ISBN-10: 9991332944, Chapter 7–3Google Scholar
  40. 40.
    Hastie T, Loader C (1993) Local regression: automatic kernel carpentry. Stat Sci 8(2):120–129CrossRefGoogle Scholar
  41. 41.
    Nadaraya EA (1964) On estimating regression. Theory Probab Appl 10:186–190CrossRefGoogle Scholar
  42. 42.
    Wathson GW, Leadbetter MR (1964) Hazard analysis I. Biometrika 51:175–184CrossRefGoogle Scholar
  43. 43.
    Gasser T, Müller HG (1979) Kernel estimation of regression functions. In: Gasser T, Rosenblatt M (eds) Smoothing techniques for curve estimation. Springer, Heidelberg, pp 23–68CrossRefGoogle Scholar
  44. 44.
    Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, LondonCrossRefGoogle Scholar
  45. 45.
    Fan J, Marron JS (1994) Fast implementations of nonparametric curve estimators. J Comput Graph Stat 3:35–56Google Scholar
  46. 46.
    Fan J, Gijbels I (1992) Variable bandwidth and local linear regression smoothers. Ann Stat 20(4):2008–2036CrossRefGoogle Scholar
  47. 47.
    Ruppert D, Wand M (1994) Multivariate locally weighted least-squares regression. Ann Stat 22(3):1346–1370CrossRefGoogle Scholar
  48. 48.
    Cheng MY, Fan J, Marron J (1997) On automatic boundary corrections. Ann Stat 25(4):1691–1708CrossRefGoogle Scholar
  49. 49.
    Sun H, Liu HX, Xiao H, He RR, Ran B (2003) Use of local linear regression model for short-term traffic forecasting. Transp Res Board 18(1836):59–71Google Scholar
  50. 50.
    Fan J, Gijbels I (1996) Local polynomial modeling and its applications. Chapman & Hall, LondonGoogle Scholar
  51. 51.
    Smith B, Williams B, Oswald K (1999) Parametric and nonparametric traffic volume forecasting. Transportation Research Record. CDROMGoogle Scholar
  52. 52.
    Faouzi E (1996) Nonparametric traffic flow prediction using kernel estimator. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France, July 19, pp 24–26Google Scholar
  53. 53.
    Rasmussen C, Williams C (2006) Gaussian processes for machine learning. MIT Press, Cambridge, MassachusettsGoogle Scholar
  54. 54.
    Anjyo K, Lewis JP. RBF interpolation and Gaussian process regression through an RKHS formulation. J Math Ind 3 (2011A-6):63–71Google Scholar
  55. 55.
    Williams CKI, Rasmussen CE (1996) Gaussian processes for regression. In: Proceeding of the Neural Information Processing Systems, vol 8. MIT PressGoogle Scholar
  56. 56.
    Stein ML (1999) Interpolation of spatial data: some theory for Kriging. Springer, New YorkCrossRefGoogle Scholar
  57. 57.
    Ranjan P, Haynes R, Karsten R (2011) A computationally stable approach to gaussian process interpolation of deterministic computer simulation data. Technometrics 53(4):366–378CrossRefGoogle Scholar
  58. 58.
    Yakowitz SJ, Szidarovszky F (1985) A comparison of Kriging with nonparametric regression methods. J Multivar Anal 16:21–53CrossRefGoogle Scholar
  59. 59.
    Scott DW, Tapia RA, Thompson JR (1977) Kernel density estimation revisited. Nonlinear Anal Theory Methods Appl 1:339–372CrossRefGoogle Scholar
  60. 60.
    Cleveland W (1979) Robust locally weighted regression and smoothing scatter plots. J Am Stat Assoc 74:829–836CrossRefGoogle Scholar
  61. 61.
    Fan J (1992) Design-adaptive nonparametric regression. J Am Stat Assoc 87:998–1004CrossRefGoogle Scholar
  62. 62.
    Wand MP, Jones MC (1995) Kernel smoothing. Chapman and Hall, LondonCrossRefGoogle Scholar
  63. 63.
    Jones MC, Marron JS, Sheather SJ (1996) A brief survey of bandwidth selection for density estimation. J Am Stat Assoc 91(433):401–407CrossRefGoogle Scholar
  64. 64.
    Scott DW, Terrell GR (1987) Biased and unbiased cross-validation in density estimation. J Am Stat Assoc 82:1131–1146CrossRefGoogle Scholar
  65. 65.
    Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71:353–360CrossRefGoogle Scholar
  66. 66.
    Sheather SJ (1986) An improved data-based algorithm for choosing the window width when estimating the density at a point. Comput Stat Data Anal 4:61–65CrossRefGoogle Scholar
  67. 67.
    Park BU, Marron JS (1990) Comparison of data-driven bandwidth selectors. J Am Stat Assoc 85:66–72CrossRefGoogle Scholar
  68. 68.
    Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B 53:683–690Google Scholar
  69. 69.
    Engel J, Herrmann E, Gasser T (1995) An iterative bandwidth selector for kernel estimation of densities and their derivative. J Nonparametric Statist 4:21–34Google Scholar
  70. 70.
    Faraway JJ, Jhun M (1990) Bootstrap choice of bandwidth for density estimation. J Am Stat Assoc 85:1119–1122CrossRefGoogle Scholar
  71. 71.
    Ruppert D, Sheather SJ, Wand MP (1995) An effective bandwidth selector for local least squares regression. J Am Stat Assoc 90:1257–1270CrossRefGoogle Scholar
  72. 72.
    Yue H, Jones E, Revesz PZ (2010) Local polynomial regression models for average traffic speed estimation and forecasting in linear constraint databases, 17th IEEE International Symposium on Temporal Representation and Reasoning, Paris, France, pp 154–161Google Scholar
  73. 73.
    Yue H, Jones E (2010) Archiving capability of spatio-temporal data in different Highway Railroad Grade Crossing (HRGC) databases, Annual Intelligent Transportation System Conference, Houston, USAGoogle Scholar
  74. 74.
    Kanellakis P, Kuper G, Revesz PZ (1995) Constraint query languages. J Comput Syst Sci 51(1):26–52CrossRefGoogle Scholar
  75. 75.
    Kerner BS (2009) Introduction to modern traffic flow theory and control: the long road to three-phase traffic theory. Springer, BerlinCrossRefGoogle Scholar
  76. 76.
    Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, BerlinCrossRefGoogle Scholar
  77. 77.
    Al-Deek H, Abd-Elrahman A (2002) An evaluation plan for the conceptual design of the Florida transportation data warehouse, University of Central Florida, Technical Report No. 16-50-706Google Scholar
  78. 78.
    Dahlgren J, Garcia RC, Turner S (2001) Completing the circle: using archived operation data to better link decision to performance, California Path Research Report No. UCB-ITS-PRR-2001-23Google Scholar
  79. 79.
    Liu HX, He R, Tao Y, Ran B (2002) A literature and best practices scan: its data management and archiving, University of Wisconsin at Madison Technical Project No. 0092-02-11Google Scholar
  80. 80.
    Yue H, Yang R (2005) Development of Intelligent Transportation Systems (ITS) and plan of integrated information system. Journal of Wuhan University of Technology 29(4):560–563Google Scholar
  81. 81.
    Yue H, Revesz PZ (2012) TVICS: an efficient traffic video information converting system, 19th IEEE International Symposium on Temporal Representation and Reasoning, Leicester, UK, pp 141–148Google Scholar
  82. 82.
    Schwinn A, Schelp J (2003) Data integration patterns. Business Information Systems Conference, Colorado Springs, USAGoogle Scholar
  83. 83.
    Anderson S, Revesz PZ (2009) Efficient max count and threshold operators of moving objects. Geoinformatica 13(4):355–396CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hang Yue
    • 1
    Email author
  • Laurence R. Rilett
    • 2
    • 3
  • Peter Z. Revesz
    • 4
  1. 1.Johns Hopkins Healthcare LLCGlen BurnieUSA
  2. 2.Nebraska Transportation CenterLincolnUSA
  3. 3.Civil Engineering DepartmentUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Computer Science & Engineering DepartmentUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations