Skip to main content
Log in

Reconstruct street network from imprecise excavation data using fuzzy Hough transforms

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

This paper proposes an approach for handling multivariate data in an archaeological Geographical Information System (GIS), providing a new tool to archaeologists and historians. Our method extracts potential objects of known shapes in a geographical database (GDB) devoted to archaeological excavations. In this work, archaeological information is organized according to three components: location, date and a shape parameter, in a context where data are imprecise and lacunar. To manage these aspects, a three-step methodology was developed using fuzzy sets modeling and adapting the fuzzy Hough transform. This methodology is applied in order to define the appropriate tool for a GDB of Roman street remains in Reims, France. The defined queries return an estimation of the possible presence of streets during a fuzzy time interval given by experts on the Roman period in Reims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Altman D (1994) Fuzzy set theoretic approaches for handling imprecision in spatial analysis. Int J Geograph Inf Syst 8(3):271–290

    Google Scholar 

  2. Arnold J, Libby W (1949) Age determinations by radiocarbon content: checks with samples of known age. Science 110(2869):678–680

    Article  Google Scholar 

  3. Bejaoui L, Bédard Y, Pinet F, Salehi M, Schneider M (2007) Logical consistency for vague spatiotemporal objects and relations. In: International symposium on spatial data quality—ISSDQ’07. Enschede, Netherland

    Google Scholar 

  4. Bonnet N (2002) An unsupervised generalized Hough transform for natural shapes. Pattern Recogn 35(5):1192–1196

    Google Scholar 

  5. Choquet G (1954) Theory of capacities. Ann de l’Inst Fourrier 5:131–295

    Article  Google Scholar 

  6. Conolly J, Lake M (2006) Geographic information system in archaeology. Cambridge University Press

  7. De Runz C, Desjardin E. Herbin M, Piantoni F (2006) A new Method for the comparison of two fuzzy numbers extending fuzzy max order. In: Information processing and management of uncertainty in knowledge-based systems - IPMU’06. Editions EDK, Paris, France, pp 127–133

  8. De Runz C, Desjardin E, Piantoni F, Herbin M (2008) Toward handling uncertainty of excavation data into a GIS. In: 36th Annual conference on computer applications and quantitative methods in archaeology. Budapest, Hungary, pp 187–191

  9. De Runz C, Pargny D, Desjardin E, Herbin M, Piantoni F (2006) Aide à la décision en archéologique préventive : Les rues de la Cité des Rèmes. In: Conférence Francophone ESRI. Issy-Les-Moulineaux, France

  10. Detyniecki M (2000) Mathematical aggregation operators and video querying their application to video querying. Ph.D. thesis, Université Paris 6, France

  11. Devillers R, Jeansoulin R (eds) (2006) Fundamental of Spatial Data Quality. ISTE Publishing Company

  12. Dixon B (2005) Groundwater vulnerability mapping: a GIS and fuzzy rule based integrated tool. Appl Geogr 25(4):327–347

    Article  Google Scholar 

  13. Dou C, Wolt W, Bogardi I (1999) Fuzzy rule-based approach to describe solute transport in the unsaturated zone. J Hydrol 220(1–2):74–85

    Article  Google Scholar 

  14. Dragicevic S, Marceau DJ (2000) An application of fuzzy logic reasoning for GIS temporal modeling of dynamic processes. Fuzzy Set Syst 113(1):69–80

    Article  Google Scholar 

  15. Dubois D, Prade H (2004) On the use of aggregation operations in information fusion processes. Fuzzy Set Syst 142(1):143–161

    Article  Google Scholar 

  16. Duda RO, Hart PE (1972) Use of the Hough transform to detect lines and curves in pictures. Comm ACM 15(1):11–15

    Article  Google Scholar 

  17. Fisher P (1991) First experiments in viewshed uncertainty: the accuracy of the viewable area. Photogramm Eng Rem S 58(3):345–352

    Google Scholar 

  18. Fisher P, Comber A, Wadsworth R (2006) Approaches to uncertainty in spatial data. In: Devillers R, Jeansoulin R (eds) Fundamentals of spatial data quality, GIS. ISTE, pp 43–60

  19. Goodchild M, Jeansoulin R (eds) (1997) Data quality in geographic information, from error to uncertainty. Hermes

  20. Han JH, Koczy LT, Poston T (1994) Fuzzy Hough transform. Pattern Recogn Lett 15(7):649–648

    Article  Google Scholar 

  21. Harris E (1989) Principles of archaeological stratigraphy, second edn. Academic Press

  22. Hough PVC (1962) Method and means for recognizing complex patterns. Tech. rep. US 3 069 654

  23. Illingworth J, Kittler J (1988) A survey of the Hough transform. Inform Control 44(1):87–116

    Google Scholar 

  24. Leavers VF (1993) Which Hough transform. CVGIP 58:250–264

    Article  Google Scholar 

  25. Mitra B, Scott HD, McKimmey JM (1998) Application of fuzzy logic to the prediction of soil erosion in a large watershed. Geoderma 86(3–4):183–209

    Article  Google Scholar 

  26. Navratil G (2007) Modeling data quality with possibility-distributions. In: International symposium on spatial data quality - ISSDQ’07. Enschede, Netherland

    Google Scholar 

  27. Pargny D, Piantoni F (2005) Méthodologie pour la gestion, la représentation et la modélisation des données archéologiques. In: Conférence Francophone ESRI. Issy-Les-Moulineaux, France

  28. Rolland-May C (2000) Évaluation des territoires. Hermes

  29. Shi W (2007) Four advances in handling uncertainties in spatial data and analysis. In: International symposium spatial data quality—ISSDQ’07. Enschede, Netherland

    Google Scholar 

  30. Zadeh LA (1965) Fuzzy sets. Inform Control 8(3):338–353

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Archaeological service of the Champagne-Ardenne Region and the National Institute for Preventive Archaeological Research of Reims for providing access to their data and expert knowledge. We also thank Dominique Pargny (GEGENA lab, University of Reims Champagne-Ardenne) for his contribution to the SIGRem project. We kindly thank Rodolphe Devillers, Jean-Michel Nourrit and Gilles Valette for helping revising the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril de Runz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Runz, C., Desjardin, E., Piantoni, F. et al. Reconstruct street network from imprecise excavation data using fuzzy Hough transforms. Geoinformatica 18, 253–268 (2014). https://doi.org/10.1007/s10707-013-0183-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-013-0183-1

Keywords

Navigation