, Volume 15, Issue 3, pp 417–434 | Cite as

The elements of probabilistic time geography



Time geography uses space–time volumes to represent the possible locations of a mobile agent over time in a xyt space. A volume is a qualitative representation of the fact that the agent is at a particular time t i inside of the volume’s base at t i . Space–time volumes enable qualitative analysis such as potential encounters between agents. In this paper the qualitative statements of time geography will be quantified. For this purpose an agent’s possible locations are modeled from a stochastic perspective. It is shown that probability is not equally distributed in a space–time volume, i.e., a quantitative analysis cannot be based simply on proportions of intersections. The actual probability distribution depends on the degree of a priori knowledge about the agent’s behavior. This paper starts with the standard assumption of time geography (no further knowledge), and develops the appropriate probability distribution by three equivalent approaches. With such a model any analysis of the location of an agent, or relations between the locations of two agents, can be improved in expressiveness as well as accuracy.


Time geography Space–time–cone Topological relations 



This work has been supported by grants of the Australian Academy of Science and the Australian Research Council (DP0878119).


  1. 1.
    Andrews GE (1990) Euler’s “exemplum memorabile inductionis fallacis” and q-trinomial coefficients. J Am Math Soc 3(3):653–669Google Scholar
  2. 2.
    Axhausen KW, Frei A, Ohnmacht T (2006) Networks, biographies and travel: first empirical and methodological results. In: 11th international conference on travel behaviour research, Kyoto, Japan, p session 4.8Google Scholar
  3. 3.
    Batty M (2003) Agent-based pedestrian modelling. In: Longley PA, Batty M (eds) Advanced spatial analysis. ESRI Press, Redlands, pp 81–106Google Scholar
  4. 4.
    Bovy PHL, Stern E (1990) Route choice: wayfinding in transport networks. Kluwer, DordrechtGoogle Scholar
  5. 5.
    Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mob Comput 2(5):483–502CrossRefGoogle Scholar
  6. 6.
    Clementini E, Di Felice P (1996) An algebraic model for spatial objects with indeterminate boundaries. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries, ESF GISDATA, vol 2. Taylor & Francis, pp 155–169Google Scholar
  7. 7.
    Cohn AG, Gotts NM (1996) The ‘egg-yolk’ representation of regions with indeterminite boundaries. In: Burrough PA, Frank AU (eds) Geographic objects with indeterminate boundaries, vol 2. Taylor & Francis, London, pp 171–187Google Scholar
  8. 8.
    Egenhofer M (2003) Approximations of geospatial lifelines. In: Bertino E, Floriani Ld (eds) SpaDaGIS workshop on spatial data and geographic information systems, Milano, ItalyGoogle Scholar
  9. 9.
    Egenhofer MJ, Herring JR (1991) Categorizing binary topological relationships between regions, lines, and points in geographic databases. Technical report, Department of Surveying Engineering, University of MaineGoogle Scholar
  10. 10.
    Forer P (1998) Geometric approaches to the nexus of time, space, and microprocess. In: Egenhofer M, Golledge RG (eds) Spatial and temporal reasoning in geographic information systems. Oxford University Press, New York, pp 171–190Google Scholar
  11. 11.
    Gaylord RJ, Nishidate K (1996) Modeling nature – cellular automata simulations with mathematica. Springer, New YorkGoogle Scholar
  12. 12.
    Gelb A (ed) (1974) Applied optimal estimation. MIT Press, CambridgeGoogle Scholar
  13. 13.
    Golledge RG, Stimson RJ (1997) Spatial behavior: a geographic perspective. The Guildford Press, New YorkGoogle Scholar
  14. 14.
    Güting RH, Schneider M (2005) Moving objects databases. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Hägerstrand T (1970) What about people in regional science? In: Papers of the regional science association, vol 24, pp 7–21Google Scholar
  16. 16.
    Handley S, Langley P, Rauscher F (1998) Learning to predict the duration of an automobile trip. In: Proceedings of the fourth international conference on knowledge discovery and data mining. AAAI Press, New York, pp 219–22Google Scholar
  17. 17.
    Hendricks M, Egenhofer M, Hornsby K (2003) Structuring a Wayfinder’s dynamic space-time environment. In: Kuhn W, Worboys M, Timpf S (eds) Spatial information theory. Lecture notes in computer science, vol 2825. Springer, Berlin, pp 75–92Google Scholar
  18. 18.
    Hornsby K, Egenhofer M (2002) Modeling moving objects over multiple granularities. Ann Math Artif Intell 36(1–2):177–194CrossRefGoogle Scholar
  19. 19.
    Huang YK, Chen CC, Lee C (2009) Continuous k-nearest neighbor query for moving objects with uncertain velocity. GeoInformatica 13(1):1–25CrossRefGoogle Scholar
  20. 20.
    Jeanson R, Blanco S, Fournier R, Deneubourg JL, Fourcassie V, Theraulaz G (2003) A model of animal movements in a bounded space. J Theor Biol 225(4):443–451CrossRefGoogle Scholar
  21. 21.
    Kriegel HP, Kunath P, Renz M (2007) Probabilistic nearest-neighbor query on uncertain objects. In: Kotagiri R, Krishna PR, Mohania M, Natajeewarawat E (eds) Advances in databases: concepts, systems and applications, vol 4443. Springer, Berlin, pp 337–348Google Scholar
  22. 22.
    Laube P, Dennis T, Forer P, Walker M (2007) Movement beyond the snapshot: dynamic analysis of geospatial lifelines. Comput Environ Urban Syst 31(5):481–501CrossRefGoogle Scholar
  23. 23.
    Lenntorp B (1976) Paths in space–time environments. A time-geographic study of movement possibilities of individuals. Lund studies in geography, vol 44. Institutionen för Kulturgeografi och Ekonomisk Geografi, Lund University, Lund, SwedenGoogle Scholar
  24. 24.
    Miller HJ (1991) Modeling accessibility using space–time prism concepts within geographical information systems. Int J Geogr Inf Sci 5(3):287–301CrossRefGoogle Scholar
  25. 25.
    Miller HJ (2005) A measurement theory for time geography. Geogr Anal 37(1):17–45CrossRefGoogle Scholar
  26. 26.
    Miller HJ (2005) Necessary space-time conditions for human interaction. Environ Plan B 32(3):381–401CrossRefGoogle Scholar
  27. 27.
    Miller HJ, Bridwell SA (2009) A field-based theory for time geography. Ann Assoc Am Geogr 99(1):49–75CrossRefGoogle Scholar
  28. 28.
    Nagel K (2003) Multi-agent transportation simulations. Draft of a book. Institute for Scientific Computing, Department of Computer Science, ETHZGoogle Scholar
  29. 29.
    von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, UrbanaGoogle Scholar
  30. 30.
    Neutens T, Witlox F, Demaeyer P (2007) Individual accessibility and travel possibilities: a literature review on time geography. European Journal of Transport and Infrastructure Research 7(4):335–352Google Scholar
  31. 31.
    Neutens T, Witlox F, Van de Weghe N, De Maeyer P (2007) Human interaction spaces under uncertainty. Transp Res Rec 2021:28–35CrossRefGoogle Scholar
  32. 32.
    Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356CrossRefGoogle Scholar
  33. 33.
    Pearson K (1905) The problem of the random walk. Nature 72(1866):342CrossRefGoogle Scholar
  34. 34.
    Pfoser D, Jensen CS (1999) Capturing the uncertainty of moving-object representations. In: Güting RH, Papadias D, Lochovsky F (eds) Advances in spatial databases. Lecture notes in computer science, vol 1651. Springer, Berlin, pp 111–131CrossRefGoogle Scholar
  35. 35.
    Polya G (1921) Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Straßennetz. Math Ann 84:149–160CrossRefGoogle Scholar
  36. 36.
    Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: Brachmann R, Levesque H, Reiter R (eds) Third international conference on the principles of knowledge representation and reasoning. Morgan-Kaufmann, Los Altos, CA, pp 165–176Google Scholar
  37. 37.
    Raubal M, Winter S, Tessmann S, Gaisbauer C (2007) Time geography for ad hoc shared-ride trip planning in mobile geosensor networks. ISPRS J Photogramm Remote Sens 62(5):366–381CrossRefGoogle Scholar
  38. 38.
    Seamon D (1979) A geography of the lifeworld. Thesis, St. Martin’s Press, New YorkGoogle Scholar
  39. 39.
    Shlesinger MF (1992) New paths for random walkers. Nature 355:396–397CrossRefGoogle Scholar
  40. 40.
    Sistla AP, Wolfson O, Chamberlain S, Dao S (1998) Querying the uncertain position of moving objects. In: Etzion O, Jajodia S, Sripada S (eds) Temporal databases: research and practice. Lecture notes in computer science, vol 1399. Springer, Berlin, pp 310–337CrossRefGoogle Scholar
  41. 41.
    Thrift N (1977) An introduction to time-geography, concepts and techniques in modern geography, vol 13. Geo Abstracts Ltd., NorwichGoogle Scholar
  42. 42.
    Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240CrossRefGoogle Scholar
  43. 43.
    Tomlin CD (1989) Geographic information systems and cartographic modeling. Prentice Hall, New YorkGoogle Scholar
  44. 44.
    Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412CrossRefGoogle Scholar
  45. 45.
    Trajcevski G, Tamassia R, Ding H, Scheuermann P, Cruz IF (2009) Moving convolutions and continuous probabilistic nearest-neighbor queries for uncertain trajectories. In: Kersten M, Novikov B, Teubner J, Polutin V, Manegold S (eds) Proceedings of the 12th international conference on extending database technology. ACM Press, St Petersburg, Russia, pp 874–885CrossRefGoogle Scholar
  46. 46.
    Wang MZ, Kulik L, Kotagiri R (2009) Robust traffic merging strategies for sensor-enabled cars using time geography. In: Wolfson O, Agrawal D, Lu CT (eds) Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic information systems. ACM Press, Seattle, WA, pp 362–371Google Scholar
  47. 47.
    Winter S, Bittner T (2002) Hierarchical topological reasoning with vague regions. In: Shi W, Fisher P, Goodchild MF (eds) Spatial data quality. Taylor & Francis, London, pp 35–49Google Scholar
  48. 48.
    Wolfson O, Sistla AP, Chamberlain S, Yesha Y (1999) Updating and querying databases that track mobile units. Distributed and Parallel Databases 7(3):257–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of GeomaticsThe University of MelbourneVictoriaAustralia
  2. 2.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations