Skip to main content
Log in

Modeling Motion Relations for Moving Objects on Road Networks

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

In this paper, a basic set of motion relations capturing specific prototypical movements of vehicles on US road networks are introduced. Vehicle positional data collected from a geosensor network and stored in a spatio-temporal database serve as the basis for computing the relations that include isBehind, inFrontOf, driveBeside, and passBy. Relational SQL queries are used to derive the relations, returning information about pairs of moving objects and their relative positions. This information provides additional user contexts for binary vehicle patterns relative to a reference object. A framework for the kinds of moving objects that participate in these relations is supplied through an associated TransportationDevice ontology. Depending on the class of moving object, a relation such as isBehind captures scenarios that are facilitating or inhibiting with respect to the movement of traffic. For example, if a police car is known to be behind an automobile, the automobile typically slows to correspond with the legal speed limit. In this work, we show how linking the spatio-temporal database to an ontology can augment and extend the motion relation information, providing multi-granular perspectives of moving vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Güting, M. Böhlen, M. Erwig, C. Jensen, N. Lorentzos, M. Schneider, and M. Vazirgiannis. “A foundation for representing and querying moving objects”, ACM Transactions on Database Systems, Vol. 25:1–42, 2000.

    Article  Google Scholar 

  2. D. Pfoser, C. Jensen, and Y. Theodoridis. “Novel approaches in query processing for moving object trajectories,” VLDB 2000, pp. 395–406, 2000.

  3. O. Wolfson, L. Jiang, A. Sistla, S. Chamberlain, N. Rishe, and M. Deng. “Databases for tracking mobile units in real time,” in Proceeding of the 7th international Conference on Database Theory, Lecture Notes in Computer Science (LNCS), vol. 1540, pp. 169–186, Springer Verlag, 1998.

  4. C. Hage, C. Jensen, B. Pedersen, L. Speicys, and I. Timko. “Integrated data management for mobile services in the real world,” VLDB Conference, 2003.

  5. L. Forlizzi, R. Güting, E. Nardelli, and M. Schneider. “A data model and data structures for moving objects databases,” Proceedings of the 2000 ACM SIGMOD international Conference on Management of Data, Dallas, TX USA, pp. 319–330, 2000.

  6. R. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann: San Mateo, CA, 2005.

    Google Scholar 

  7. M. Rodríguez-Tastets. “Moving Objects Databases,” Encyclopedia of Database Technologies and Applications, pp. 377–385, 2005.

  8. O. Wolfson, S. Chamberlain, K. Kalpakis, and Y. Yesha. “Modeling moving objects for location based services,” Infrastructure for Mobile and Wireless Systems, pp. 46–58, 2001.

  9. R. Xie and R. Shibasaki. “A unified spatiotemporal schema for representing and querying moving features,” SIGMOD Record 34, pp. 45–50, 2005.

    Google Scholar 

  10. D. Pfoser and C. Jensen. “Indexing of network constrained moving objects,” GIS 2003, pp. 25–32, 2003.

  11. K. Hornsby and M. Egenhofer. “Modeling moving objects over multiple granularities”, Annals of Mathematics and Artificial Intelligence, Vol. 36:177–194, 2002.

    Article  Google Scholar 

  12. M. Vazirgiannis and O. Wolfson. “A spatiotemporal model and language for moving objects on road networks,” Proceedings of the 7th international Symposium on Advances in Spatial and Temporal Databases, Lecture Notes in Computer Science (LNCS), vol. 2121, pp. 20–35, Springer Verlag, 2001.

  13. Z. Ding and R. Guting. “Modeling temporally variable transportation networks,” Lecture Notes in Computer Science, Springer 2973 (Database Systems for Advanced Applications), pp. 154–168, 2004.

  14. D. Pfoser and C. Jensen. “Trajectory indexing using movement constraints”, GeoInformatica, Vol. 9:93–115, 2005.

    Article  Google Scholar 

  15. A. Stefanidis, K. Eickhorst, P. Agouris, and P. Partsinevelos. “Modeling and comparing change using spatiotemporal helixes,” Proceedings of the Eleventh ACM International Symposium on Advances in Geographic Information Systems, New Orleans, Louisiana, USA, pp. 86–93, 2003.

  16. O. Wolfson. “Moving objects information management: The database challenge,”, Lecture Notes in Computer Science, 2383Springer Verlagpp. pp. 75–89, 2002.

  17. C. Freksa and K. Zimmerman. “On the utilization of spatial structures for cognitively plausible and efficient reasoning,” Proceedings of the Conference on Systems, Man and Cybernetics, Chicago, IL USA, pp. 261–266, 1992.

  18. N. Van de Weghe, B. Kuijpers, P. Bogaert, and P. De Maeyer. “A qualitative trajectory calculus and the composition of its relations,” in GeoS, Lecture Notes in Computer Science (LNCS) 3799, pp. 60–76, Springer Verlag, 2005.

  19. P. Laube and S. Imfeld. “Analyzing relative motion within groups of trackable moving point objects,”, in M. Egenhofer and D. Mark (Eds.), Proceedings of GIScience. Lecture Notes in Computer Science, 2478Springer: Berlin, pp. pp. 132–144, 2002.

    Google Scholar 

  20. P. Laube, S. Imfeld, and R. Weibel. “Discovering relative motion patterns in groups of moving point objects,”, International Journal of Geographical Information Science, Vol. 19(6):639–668, 2005.

    Article  Google Scholar 

  21. C. Du Mouza and P. Rigaux. “Mobility patterns”, GeoInformatica, Vol. 9(4):297–319, 2005.

    Article  Google Scholar 

  22. H. Cao and O. Wolfson. “Nonmaterialized motion information in transport networks, International Conference on Database Theory (ICDT), pp. 173–188, 2005.

  23. M. Erwig and M. Schneider. “Spatio-temporal predicates,”, IEEE Transactions on Knowledge and Data Engineering, Vol. 14(4):881–901, 2002.

    Article  Google Scholar 

  24. N. Van de Weghe, A. Cohn, P. De Maeyer, and F. Witlox. “Representing moving objects in computer-based expert systems: The overtake event example,”, Expert Systems with Applications, Vol. 29(24):977–983, 2005.

    Google Scholar 

  25. P. Agarwal. “Ontological considerations in GIScience,” International Journal of Geographical Information Science, Vol. 19(5):501–536, 2005.

    Article  Google Scholar 

  26. D. Mark, A. Skupin and B. Smith. “Features, objects, and other things: Ontological distinctions in the geographic domain,” Proceedings of COSIT 2001, Lecture Notes in Computer Science, 2205, pp. 489–502, Springer Verlag, 2001.

  27. B. Smith and D. Mark. “Geographical categories: an ontological investigation,”, International Journal of Geographical Information Science, Vol. 15(7):591–612, 2001.

    Article  Google Scholar 

  28. F. Fonseca, M. Egenhofer, P. Agouris, and G. Câmara. “Using ontologies for integrated geographic information systems,”, Transactions in GIS, Vol. 6(3):231–257, 2002.

    Article  Google Scholar 

  29. P. Grenon and B. Smith. “SNAP and SPAN: Towards a dynamic spatial ontology,”, Spatial Cognition and Computation, Vol. 4:69–104, 2004.

    Article  Google Scholar 

  30. S. Cole and K. Hornsby. “Modeling noteworthy events in a geospatial domain,” in M. Rodriguez, I. Cruz, S. Levashkin and M. Egenhofer (Eds.), Proceedings of the First International Conference on Geospatial Semantics, GeoS, 2005. Lecture Notes in Computer Science Vol. 3799, pp. 78–92, Springer Verlag, Berlin, 2005.

    Google Scholar 

  31. A. Galton and M. Worboys. “Processes and events in dynamic geo-networks,” in M. Rodriguez, I. Cruz, S. Levashkin, and M. Egenhofer (Eds.), Proceedings of the First International Conference on Geospatial Semantics, GeoS, 2005, Lecture Notes in Computer Science, 3799, pp. 45–59, Springer Verlag, Berlin, 2005.

    Google Scholar 

  32. M. Worboys. “Event-oriented approaches to geographic phenomena,”, International Journal of Geographical Information Science, Vol. 19:1–28, 2005.

    Article  Google Scholar 

  33. M. Worboys and K. Hornsby. “From objects to events: GEM, the geospatial event model,” Proceedings of GIScience, pp. 327–344, 2004.

  34. G. Câmara, A. Monteiro, J. Paiva, and R. DeSouza. “Action-driven ontologies of the geographical space: Beyond the field-object debate,” in M. Egenhofer and D. Mark (Ed.), GIScience 2000, Savannah, GA, Berlin: Springer, 52–54, 2000.

    Google Scholar 

  35. W. Kuhn. “Ontologies in support of activities in geographical space,” International Journal of Geographical Information Science, Vol. 15(7):613–631, 2001.

    Article  Google Scholar 

  36. M. Raubal and W. Kuhn. “Ontology-based task simulation,” Spatial Cognition and Computation, Vol. 4(1):15–37, 2004.

    Article  Google Scholar 

  37. W. Kuhn. “Geospatial semantics: why, of what, and how?,” Journal on Data Semantics, Lecture Notes in Computer Science, Vol. 3534:1–24, 2005.

    Google Scholar 

  38. B. Arpinar, A. Sheth, C. Ramadkrishnan, L. Usery, M. Azami, and M.-P. Kwan. “Geospatial ontology development and semantic analytics,” Transactions in GIS, Blackwell, 10(4), 2006.

  39. J. Dillenburg, P. Nelson, O. Wolfson, O. Yu, A. Sistla, S. McNeil, A. Ouksel, B. Xu, and J. Ben-Arie. “Applications of a transportation information architecture,” in Proceedings IEEE Int. Conf. on Networking, Sensing, and Control (ICNSC), Taipei, Taiwan, pp. 480–485, 2004.

  40. Y. An, J. Mylopoulos, and A. Borgida. “Building semantic mappings from databases to ontologies,” Proceedings of AAAI, 2006.

  41. N. Konstantinou, D-E Spanos, M. Chalas, E. Solidakis, and N. Mitrou. “VisaVis: An approach to an intermediate layer between ontologies and relational database contents,” Proceedings of the International Workshop on Web Information Systems Modeling: WISM 2006, 2006.

  42. U. Straccia and R. Troncy. “oMAP: Combining classifiers for aligning automatically OWL ontologies,” in GeoS Lecture Notes in Computer Science (LNCS) 3806, pp. 133–147, Springer Verlag, 2005.

  43. N. Fridman and M. Musen. “PROMPT: Algorithm and tool for automated ontology merging and alignment,” in Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Application of Artificial Intelligence, pp. 450–455, AAAI Press/The MIT Press, Cambridge, 2000.

    Google Scholar 

  44. Z. Ding and R. Guting. “Managing moving objects on dynamic transportation networks,” Proceedings of the 16th International Conference on Scientific and Statistical Database Management, Fernuniversitat Hagen, Germany, 2004.

  45. R. Guting, V. de Almeida, and Z. Ding. “Modeling and querying moving objects in networks,”, VLDB Journal, Vol. 15(2):165–190, 2006.

    Article  Google Scholar 

  46. H. Miller and S. Shaw. “Geographic information systems for transportation,” Oxford University Press, pp. 480, 2001.

  47. M. Duckham and L. Kulik. “A formal model of obfuscation and negotiation for location privacy,” PERVASIVE, pp. 152–170, 2005.

  48. R. Cheng, Y. Zhang, E. Bertino, and S. Prabhakar. “Querying private data in moving-object environments,” CERIAS Tech Report, vol. 45, 2005.

  49. K. Hornsby and K. King. “Linking Geosensor Network Data and Ontologies to Support Transportation Modeling,” in S. Nittel, A. Labrinidis, and A. Stefanidis (Eds.), Advances in Geosensor Networks, Lecture Notes in Computer Science, 4530, Springer, New York, 2007.

  50. B. Smith, J. Köhler, and A. Kumar. “On the application of formal principles to life science data: A case study in the gene ontology,” Proceedings of Data Integration in the Life Sciences (DILS) 2004, Lecture Notes in Bioinformatics, 2994, Springer, 2004.

  51. B. Kao and H. Molina. “An overview of real-time database systems. Advances in real-time systems,” Prentice-Hall Inc., pp. 463–486, 1995.

  52. K. Ramamritham, S. Son, and L. Dipippo. “Real-time databases and data services,”, Real-Time Systems, Vol. 28:179–215, 2004.

    Article  Google Scholar 

Download references

Acknowledgment

Kathleen Stewart Hornsby’s research is supported in part by a grant from the National Geospatial-Intelligence Agency HM1582-05-1-2039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Stewart Hornsby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart Hornsby, K., King, K. Modeling Motion Relations for Moving Objects on Road Networks. Geoinformatica 12, 477–495 (2008). https://doi.org/10.1007/s10707-007-0039-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-007-0039-7

Keywords

Navigation