Assessment of Rockfall Hazards of Moziyan in Hechuan District, Chongqing, China

Abstract

Moziyan is an area containing unstable rock masses located in Hechuan District, Chongqing, China and has constantly seen group-occurring rockfalls since 1964. The present study aims to investigate the damage of Moziyan rock mass and protect the mining areas and residential areas from rockfall phenomenon. Mohr–Coulomb model in FLAC–3D Program was built to find out the rockfall initiation position. RocFall program has been used to calculate the distribution curves of stopping positions, bounce height, total kinetic energy, and translational velocity of the falling blocks varying with horizontal distance. According to the simulation results, the stability of Moziyan rock mass is controlled by the unloading cracks behind the slope, and the falling blocks have a maximum bounce height and maximum total kinetic energy of 0 m and 2720.9 kJ respectively at the horizontal position of 461.6 m, where proper protection measures should be adopted to minimize the risk of the damage of the Moziyan rock mass. Conclusively, the results of simulation indicate that a barrier of 3 m height and 3000 kJ absorption capacity is enough to resist the falling stones with a maximum speed of 13.2 m/s at the horizontal position of 461.6 m.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Agliardi F, Crosta GB (2003) High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40(4):455–471. https://doi.org/10.1016/s1365-1609(03)00021-2

    Article  Google Scholar 

  2. Ansari MK, Ahmad M, Singh R et al (2014) Rockfall hazard assessment at Ajanta Cave, Aurangabad, Maharashtra India. Arab J Geosci 7(5):1773–1780. https://doi.org/10.1007/s12517-013-0867-8

    Article  Google Scholar 

  3. Asteriou P, Tsiambaos G (2015) Empirical model for predicting rockfall trajectory direction. Rock Mech Rock Eng 49(3):1–15. https://doi.org/10.1007/s00603-015-0798-7

    Article  Google Scholar 

  4. Azzoni A, La Barbera G, Zaninetti A (1995) Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci 32(7):709–724. https://doi.org/10.1016/0148-9062(95)00018-C

    Article  Google Scholar 

  5. Buzzi O, Spadari M, Giacomini A et al (2013) Experimental testing of rockfall barriers designed for the low range of impact energy. Rock Mech Rock Eng 46(4):701–712. https://doi.org/10.1007/s00603-012-0295-1

    Article  Google Scholar 

  6. Chau KT, Wong RHC, Wu JJ (2002) Coefficient of restitution and rotational motions of rockfall impacts. Int J Rock Mech Min Sci 39(1):69–77. https://doi.org/10.1016/S1365-1609(02)00016-3

    Article  Google Scholar 

  7. Chen HK, Song YM (2016) Numerical simulation for formation process of moziyan perilous rock in Hechuan District of Chongqing. J Chongqing Norm Univ Natl Sci Edition 33(1):36–39. https://doi.org/10.11721/cqnuj20160106

    Article  Google Scholar 

  8. Escallón JP, Wendeler C, Chatzi E et al (2014) Parameter identification of rockfall protection barrier components through an inverse formulation. Eng Struct 77:1–16. https://doi.org/10.1016/j.engstruct.2014.07.019

    Article  Google Scholar 

  9. Feng ZY, Lo CM, Lin QF (2016) The characteristics of the seismic signals induced by landslides using a coupling of discrete element and finite difference methods. Landslides 14(2):1–14. https://doi.org/10.1007/s10346-016-0714-6

    Article  Google Scholar 

  10. Fityus SG, Giacomini A, Buzzi O (2013) The significance of geology for the morphology of potentially unstable rocks. Eng Geol 162:43–52. https://doi.org/10.1016/j.enggeo.2013.05.007

    Article  Google Scholar 

  11. Gentilini C, Gottardi G, Govoni L et al (2013) Design of falling rock protection barriers using numerical models. Eng Struct 50:96–106. https://doi.org/10.1016/j.engstruct.2012.07.008

    Article  Google Scholar 

  12. Giani GP, Giacomini A, Migliazza M et al (2004) Experimental and theoretical studies to improve rock fall analysis and protection work design. Rock Mech Rock Eng 37(5):369–389. https://doi.org/10.1007/s00603-004-0027-2

    Article  Google Scholar 

  13. Gül M, Özbek A, Karacan E (2016) Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla—SW Turkey. Environ Earth Sci 75(19):1310. https://doi.org/10.1007/s12665-016-6113-4

    Article  Google Scholar 

  14. Irfan M, Chen YL (2011) Segmented loop algorithm of theoretical calculation of trajectory of rockfall. Geotech Geol Eng 22(4):1–8. https://doi.org/10.1007/s10706-016-0113-8

    Article  Google Scholar 

  15. Keskin İ (2013) Evaluation of rock falls in an urban area: the case of Boğaziçi (Erzincan/Turkey). Environ Earth Sci 70(4):1619–1628. https://doi.org/10.1007/s12665-013-2247-9

    Article  Google Scholar 

  16. Koleini M, Rooy JLV (2011) Falling rock hazard index: a case study from the Marun Dam and power plant, south-western Iran. Bull Eng Geol Env 70(2):279–290. https://doi.org/10.1007/s10064-010-0327-6

    Article  Google Scholar 

  17. Koo RCH, Kwan JSH, Lam C et al (2017) Dynamic response of flexible rockfall barriers under different loading geometries. Landslides 14(3):905–916. https://doi.org/10.1007/s10346-016-0772-9

    Article  Google Scholar 

  18. Korkanc M, Tugrul A, Savran A et al (2015) Structural-geological problems in Gümüsler archeological site and monastery. Environ Earth Sci 73(8):4525–4540. https://doi.org/10.1007/s12665-014-3739-y

    Article  Google Scholar 

  19. Kwan JSH, Chan SL, Cheuk JCY et al (2014) A case study on an open hillside landslide impacting on a flexible rockfall barrier at Jordan Valley Hong Kong. Landslides 11(6):1–14. https://doi.org/10.1007/s10346-013-0461-x

    Article  Google Scholar 

  20. Lambert S, Bourrier F, Toe D (2013) Improving three-dimensional rockfall trajectory simulation codes for assessing the efficiency of protective embankments. Int J Rock Mech Min Sci 60:26–36. https://doi.org/10.1016/j.ijrmms.2012.12.029

    Article  Google Scholar 

  21. Leine RI, Schweizer A, Christen M et al (2014) Simulation of rockfall trajectories with consideration of rock shape. Multibody SysDyn 32(2):241–271. https://doi.org/10.1007/s11044-013-9393-4

    Article  Google Scholar 

  22. Li L, Lan H (2015) Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Env 74(4):1163–1176. https://doi.org/10.1007/s10064-015-0718-9

    Article  Google Scholar 

  23. Macciotta R, Martin CD, Cruden DM (2015) Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides 12(4):757–772. https://doi.org/10.1007/s10346-014-0503-z

    Article  Google Scholar 

  24. Mentani A, Giacomini A, Buzzi O et al (2016a) Numerical modelling of a low-energy rockfall barrier: new insight into the bullet effect. Rock Mech Rock Eng 49(4):1247–1262. https://doi.org/10.1007/s00603-015-0803-1

    Article  Google Scholar 

  25. Mentani A, Govoni L, Gottardi G et al (2016b) A new approach to evaluate the effectiveness of rockfall barriers. Proced Eng 158:398–403. https://doi.org/10.1016/j.proeng.2016.08.462

    Article  Google Scholar 

  26. Pellicani R, Spilotro G, Westen CJV (2016) Rockfall trajectory modeling combined with heuristic analysis for assessing the rockfall hazard along the Maratea SS18 coastal road (Basilicata, Southern Italy). Landslides 13(5):985–1003. https://doi.org/10.1007/s10346-015-0665-3

    Article  Google Scholar 

  27. Polat A, Keskin I, Denizli I (2016) Preventing and analysis of falling rocks: a case of Sarica village (Gürün, Turkey). J Geol Soc India 88(6):763–772. https://doi.org/10.1007/s12594-016-0544-0

    Article  Google Scholar 

  28. Rocscience (2004) RocFall software for risk analysis of falling rock on steep slope. Rocscience User’s Guide

  29. Ruiz-Carulla R, Corominas J, Mavrouli O (2017) A fractal fragmentation model for rockfalls. Landslides 14(3):875–889. https://doi.org/10.1007/s10346-016-0773-8

    Article  Google Scholar 

  30. Sun P, Yin YP, Wu SR et al (2012) Does vertical seismic force play an important role for the failure mechanism of rock avalanches? A case study of rock avalanches triggered by the Wenchuan earthquake of May 12, 2008, Sichuan China. Environ Earth Sci 66(5):1285–1293. https://doi.org/10.1007/s12665-011-1338-8

    Article  Google Scholar 

  31. Sun SQ, Li LP, Li SC et al (2017) Rockfall hazard assessment on Wangxia rock mass in Wushan (Chongqing, China). Geotech Geol Eng 35(4):1895–1905. https://doi.org/10.1007/s10706-017-0203-2

    Article  Google Scholar 

  32. Sun XP, He SM, Liu EL et al (2014) Prediction analysis for impact of collapse bodies on structures based on unified discrete element and finite difference numerical simulation. Eng Mech 31(12):32–39. https://doi.org/10.6052/j.issn.1000-4750.2013.09.0894

    Article  Google Scholar 

  33. Topal T, Akin MK, Akin M (2011) Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards 62(2):255–274. https://doi.org/10.1007/s11069-011-9995-1

    Article  Google Scholar 

  34. Tunusluoglu MC, Zorlu K (2009) Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environ Geol 56(5):963–972. https://doi.org/10.1007/s00254-008-1198-z

    Article  Google Scholar 

  35. Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Special report 176: landslides: analysis and control transportation and road research board. National Academy of Science, Washington DC, pp 11–33

    Google Scholar 

  36. Wasowski J, Del Gaudio V (2000) Evaluating seismically induced mass movement hazard in Caramanico Terme (Italy). Eng Geol 58(3–4):291–311. https://doi.org/10.1016/s0013-7952(00)00040-5

    Article  Google Scholar 

  37. Wei LW, Chen H, Lee CF et al (2014) The mechanism of rockfall disaster: a case study from Badouzih, Keelung, in northern Taiwan. Eng Geol 183:116–126. https://doi.org/10.1016/j.enggeo.2014.10.008

    Article  Google Scholar 

  38. Whittow J (1984) Dictionary of physical geography. Penguin, London

    Google Scholar 

  39. Ye SQ, Tang LQ, Chen HK et al (2005) Study on mozilling unstable rock and it and control in yunyang county, chongqing city. J Geol Hazards Environ Preserv 16(1):17–22. https://doi.org/10.3969/j.issn.1006-4362.2005.01.005

    Article  Google Scholar 

  40. Yilmaz I, Yildirim M, Keskin I (2008) A method for mapping the spatial distribution of RockFall computer program analyses results using ArcGIS software. Bull Eng Geol Env 67(4):547–554. https://doi.org/10.1007/s10064-008-0174-x

    Article  Google Scholar 

  41. Zhang GC, Tang HM, Xiang B et al (2015) Theoretical study of rockfall impacts based on logistic curves. Int J Rock Mech Min Sci 78:133–143. https://doi.org/10.1016/j.ijrmms.2015.06.001

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by the projects initiated by the National Key Research and Development of China (2019YFC1509904), China Geological Survey (DD20190634), the National Natural Science Foundation of China (51678097; 51378521), and Key Laboratory of Geological Hazards Mitigation for Mountainous Highway and Waterway, Chongqing Municipal Education Commission, Chongqing Jiaotong University (kfxm2018-02). We would like to extend our sincere appreciation for their strong support. Special thanks also go to the editorial board and the reviewers of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuntao Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Shi, S., Tang, H. et al. Assessment of Rockfall Hazards of Moziyan in Hechuan District, Chongqing, China. Geotech Geol Eng (2020). https://doi.org/10.1007/s10706-020-01394-3

Download citation

Keywords

  • Rockfall
  • Assessment
  • FLAC–3D
  • RocFall
  • Rock masses in moziyan