Skip to main content
Log in

Evaluation of Dynamic Soil Properties for Alluvial Plain of Bejaia Using Field Data and Laboratory Tests

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

This paper deals with the evolution of the shear modulus G and the damping D as a function of the shear deformation of the soil, using data from field and laboratory tests. The studied experimental site is located in port area of the city of Bejaia (Algeria), which has already been the subject of numerous geotechnical and geophysical investigation campaigns as part of construction of important industrial projects. In a first step, the geological, tectonic and hydrological contexts of the region are described, as well as the results of the geophysical and geotechnical tests. The result of this first step is the development of a database from field and laboratory tests. In a second step, monotonic and cyclic triaxial tests are performed to identify the dynamic properties on a reconstituted silty clayey sand soil in the laboratory with a characteristic relatively close to the ground in place. In a third step, a numerical analysis is carried out using a FLAC2D code. The nonlinear elastic model proposed by Ramberg–Osgood and limited by the Mohr–Coulomb criterion is used. The comparison between the numerical results and the experimental data shows the applicability of the Ramberg–Osgood model to describe the dynamic behavior of muddy silty sand and muddy sands of Bejaia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  • AFPS (2003) Le séisme du 21 Mai 2003 en Algérie, Rapport préliminaire de la mission AFPS organisée avec le Organisée avec le concours du Ministère de l’Ecologie et du Développement Durable (MEDD/DPPR/SDPRM):92

  • AFNOR N 94 074–Sols: reconnaissance et essais–Essais à l’appareil triaxial de révolution, 1994 AFNOR, Paris 36

  • ASTM D (1996) 3999—91 Standard test methods for the determination of the modulus and damping properties of soil using the cyclic triaxial apparatus

  • Atkison J, Stallebrass S (1991) Experimental determination of stress-strain-time characteristics in laboratory and in situ tests. In: Proceedings, 10th European conference on SMGE, Florence, pp 915–956

  • Bagagli Y, Vincens E, Fry J-J (2010) A model for the computation of engineering earth structures to a seismic motion. Eur J Environ Civ Eng 14:599–616

    Article  Google Scholar 

  • Bahar R, Sadaoui O, Khiatine M (2011) Comportement des fondations d’ouvrages sur les sols mous de Béjaia renforcés par des colonnes ballastées 2ème Séminaire International Innovation et valorisation dans le Génie Civil, INVACO2

  • Bayat M, Ghalandarzadeh A (2017) Stiffness degradation and damping ratio of sand-gravel mixtures under saturated state. Int J Civ Eng 16(10):1261–1277. https://doi.org/10.1007/s40999-017-0274-8

    Article  Google Scholar 

  • Borel S, Reiffsteck P (2006) Caractérisation de la déformabilité des sols au moyen d’essais en place Etudes et recherches des Laboratoires des ponts et chaussées Série Géotechnique

  • Braja M (1983) Fundamentals of soil dynamics. Elsevier, New York

    Google Scholar 

  • Casagrande A (1948) Classification and identification of soils. Trans Am Soc Civ Eng 113:901–930

    Google Scholar 

  • Chan C (1985) Instruction manual, CKC E/P cyclic loading triaxial system user’s manual. Soil Engineering Equipment Company, San Francisco

    Google Scholar 

  • Column GR (2010) The GDS resonant column system handbook google scholar

  • CRAAG Centre de Recherche en Astronomie Astrophysique et Géophysique, (http://www.craag.dz/r_sismologique.php)

  • Delft-Laboratory (1978) Etude du potentiel de liquéfaction du sol du site de la nouvelle raffinerie du terminal marin Sud de Bejaia SONATRACH Engineering and Development-Alger, BO-242850–58

  • Drnevich V, Hardin B, Shippy D (1978) Modulus and damping of soils by the resonant-column method. In: Silver ML, Tiedemann D (eds) Dynamic geotechnical testing. ASTM International, West Conshohocken

    Google Scholar 

  • Hardin K, Drnevich V, Wang J, Sams C (1994) Resonant column testing at pressures up to 3.5 MPa (500 psi). In: Ebelhar RJ, Drnevich VP, Kutter BL (eds) Dynamic geotechnical testing II. ASTM International, West Conshohocken

    Google Scholar 

  • Ishimoto M, Iida K (1937) Determination of elastic constants of soil by means of vibration methods. Bull Earthq Res Inst 16:67

    Google Scholar 

  • Kallioglou P, Tika T, Koninis G, Pitilakis K (2009) Shear modulus and damping ratio of organic soils. Geotech Geol Eng 27:217. https://doi.org/10.1007/s10706-008-9224-1

    Article  Google Scholar 

  • Khiatine M (2011) Renforcement des sols de fondation par des colonnes ballastées. Application à la fondation d’un silo de 80000 tonnes

  • Ladd R (1978) Specimen preparation using undercompaction. Geotech Test J 1:16–23

    Article  Google Scholar 

  • Laird J, Stokoe K (1993) Dynamic properties of remolded and undisturbed soil samples tested at high confining pressures. Geotechnical Engineering Report GR93 6

  • Le TN (2006) Modélisations du comportement des barrages en terre sous séismes. Grenoble INPG

  • Meyerhof G (1956) Penetration tests and bearing capacity of cohesionless soils. J Soil Mech Found Div 82:1–19

    Google Scholar 

  • Pecker A (1984) Dynamique des sols, presses de l’ENPC. Paris

  • Ramberg W, Osgood WR (1943) Description of stress–strain curves by three parameters

  • Reiffsteck P (2002) Nouvelles technologies d’essai en mecanique des sols-Etat de l’art. In: Param 2002-symposium international identification et determination des parametres des sols et des roches pour les calculs geotechniques, Paris, 2–3 septembre 2002

  • Robertson PK, Campanella R (1983) Interpretation of cone penetration tests. Part I: sand. Can Geotech J 20:718–733

    Article  Google Scholar 

  • Roth JP (1950) Les séismes de Kherrata et la sismicité de l’Algérie. Bull de Service de la Carte Géologique de l’Algérie 4ème série:N. 3 (40 p.). Alger, Algérie

  • RPA (2003) Algerian Seismic Regulations RPA 99, version 2003 (National Earthquake Engineering Applied Research Center), CGS, Algeria

  • Saci L (2011) Etude de l’évolution des paramètres dynamiques des sols à partir d’essais geophysiques. Université Mouloud Mammeri

  • Sadaoui O (2006) Analyse numérique et expérimentale du comportement des sols compressibles renforcés par des colonnes ballastées Mémoire de magister de l’université A Mira, Bejaia

  • Sadaoui O, Bahar R (2017) Field measurements and back calculations of settlements of structures founded on improved soft soils by stone columns. Eur J Environ Civ Eng. 1–27. https://doi.org/10.1080/19648189.2016.1271358

    Article  Google Scholar 

  • SCTE (2008) CTELAB Geotechnical Department, Etudes géotechniques (rapports géotechniques de la zone d’extension sur mer du complexe Cevital Béjaia : silo de 80 000 tonnes, hangar de stockage de 150 000 tonnes, bâtiment de conditionnement, cogénération, zone des 100 m)

  • Seed H, Idriss I (1970) Soil moduli and damping factors for dynamic response. University of California, Berkeley, Rept, EERC-70-10

  • Sheet-no 26 (1960) Published by the service of the geological map of Algeria

  • Shivaprakash B, Dinesh S (2017) Dynamic properties of sand-fines mixtures. Geotech Geol Eng 35:2327–2337. https://doi.org/10.1007/s10706-017-0247-3

    Article  Google Scholar 

  • Tani K (1994) General report: measurement of shear deformation of geomaterials-Field tests. In: Proceedings of 1st international symposium on prefailure deformation of geomaterials, pp 1115–1131

  • Tatsuoka F, Jardine R, Lo Presti D, Di Benedetto H (1997) Characterising the prefailure deformation properties of geomaterials. In: 14 international conf on soil mechanics and found engineering, Hambourg, pp 1–36

  • Verruijt A (1996) Soil dynamics. Technische Universiteit, Faculteit Civiele Techniek

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117:89–107

    Article  Google Scholar 

  • Wang Z, Zhang N, Cai G, Li Q, Wang J (2018) Field investigation of maximum dynamic shear modulus of clay deposit using seismic piezocone. Int J Civ Eng. https://doi.org/10.1007/s40999-018-0306-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the assistance of the technical staff of the establishment of Society Consulting and Testing Engineering (SCTE) especially for data and the PROFAS B + scholarship funding available for scientific use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Khiatine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiatine, M., Reiffsteck, P. & Bahar, R. Evaluation of Dynamic Soil Properties for Alluvial Plain of Bejaia Using Field Data and Laboratory Tests. Geotech Geol Eng 37, 4707–4730 (2019). https://doi.org/10.1007/s10706-019-00933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-019-00933-x

Keywords

Navigation