Skip to main content
Log in

Pseudo-Static Bearing Capacity Analysis of Shallow Strip Footing over Two-Layered Soil Considering Punching Shear Failure

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

In present analysis, ultimate bearing capacity of footings residing on sub soils comprising of two layers has been investigated for the event of a thin soil layer overlying a weak deposit. Pseudo-static approach has been applied to find out the ultimate bearing capacity of shallow strip footing resting on two layered soil. Ultimate bearing capacity equation was derived as a function of the properties of soils, the footing width and the top soil thickness. Particle swarm optimization algorithm is used to optimize the solution using MATLAB R2009. The paper acquaints a detailed parametric study of the design parameters including the effect of angle of friction, mobilization factor, the ratio of the depth of embedment to the footing width and the ratio of the cohesions of both the layers. Design charts were developed in dimensionless form for very wide range of design parameters. Comparative study of the present analysis has been applied with respect to different analytical, numerical and experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ahmadi MM, Kouchaki B (2016) New and simple equations for ultimate bearing capacity of strip footings on two layered clays: numerical study. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000615

    Article  Google Scholar 

  • Al-Shenawy OA, Al-Karni AA (2003) Derivation of bearing capacity equation for a two-layered system of weak clay overlaid by dense sand layer. Pertan J Skin Technol 13(2):213–235

    Google Scholar 

  • Azam G, Wang MC (1991) Bearing capacity of strip footing supported by two layered c–φ soils. Transportation research no-1331, Transportation Research Board, Washington, pp 55–66

  • Bandini P, Pham HV (2011) Bearing capacity of embedded strip footings in two-layered clay soils. In: Proceedings of geo-frontiers congress, ASCE, Reston, VA, pp 332–341

  • Banks A, Vincent J, Anyakoha C (2007) A review of particle swarm optimization. Part I: background and development. Nat Comput 6:467–484

    Article  Google Scholar 

  • Bera KM, Sasmal S (2017) Ultimate bearing capacity analysis of square footing on two-layered soil. J Geotech Stud MAT J 2(1):1–11

    Google Scholar 

  • Brown JD, Meyerhof GG (1969) Experimental study of bearing capacity in layered clays. In: Proceedings of the international conference on soil mechanics and foundation engineering, Mexico, vol 2, pp 45–51

  • Burd HJ, Frydman S (1997) Discussion onbearing capacity of footings over two-layer foundation soils. J Geotech Eng 122(8):699–700. https://doi.org/10.1061/(asce)0733-9410(1996)

    Article  Google Scholar 

  • Chen WF (1975) Limit analysis and soil plasticity. Elsevier, Amsterdam

    Google Scholar 

  • Clerc M, Kennedy J (2002) The particle swarm explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. https://doi.org/10.1109/4235.9856926

    Article  Google Scholar 

  • Debnath L, Ghosh S (2017) Pseudo-static analysis of shallow strip footing resting on two-layered soil. Int J Geomech 18(3):04017161

    Article  Google Scholar 

  • Eberhart R, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, vol 81, pp 81–86

  • Florkiewicz A (1989) Upper bound to bearing capacity of layered soils. Can Geotech J 26(4):730–736. https://doi.org/10.1139/t89-084

    Article  Google Scholar 

  • Ghosh S, Sengupta S (2012) Formulation of seismic passive resistance on non-vertical retaining wall backfilled with c–φ soil. Civ Environ Res 2(1)

  • Haghbin M (2016) Bearing capacity of strip footings resting on granular soil overlaying soft clay. Int J Civ Eng. https://doi.org/10.1007/s40999-016-0067-5

    Article  Google Scholar 

  • Hansen JB (1970) A revised and extended formula for bearing capacity. Geotechnical Institute Bulletin, vol 28, Copanhagen

  • Hardy AC, Townsend FC (1982) Preliminary investigation of bearing capacity of layered soils by centrifugal modeling. Transportation Research Record 872, pp 20–24

  • Hijab W (1956) A note on centroid of a logarithmic spiral sector. Geotechnique 4(2):96–99

    Google Scholar 

  • Karamitros DK, Bouckovalas GD, Chaloulos YK, Andrianopoulos KI (2013) Numerical analysis of liquefaction-induced bearing capacity degradation of shallow foundations on a two-layered soil profile. Soil Dyn Earthq Eng 44:90–101

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948

  • Kenny M, Andrews KZ (1997) The bearing capacity of footings on a sand layer overlaying a soft clay. Geotechnique 47(2):339–345

    Article  Google Scholar 

  • Khatri NV, Kumar J, Akhtar S (2017) Bearing capacity of foundations with inclusion of dense sand layer over loose sand strata. Int J Geomech. https://doi.org/10.1061/(asce)gm.1943-5622.0000980.06017018-1

    Article  Google Scholar 

  • Kraft LM Jr, Helfrich SC (1983) Bearing capacity of shallow footing, sand over clay. Can Geotech J 20(1):182–185

    Article  Google Scholar 

  • Merifield RS, Nguyen VQ (2007) Two-and three-dimensional bearing capacity solution for footings on two-layered clays. Geomech Geoeng 1(2):151–162

    Article  Google Scholar 

  • Merifield RS, Sloan SW, Yu HS (1999) Rigorous plasticity solutions for the bearing capacity of two-layered clays. Geotechnique 49(4):471–490

    Article  Google Scholar 

  • Meyerhof GG (1963) Some recent research on the bearing capacity of foundations. Can Geotech J 1(1):16–26

    Article  Google Scholar 

  • Meyerhof GG (1974) Ultimate bearing capacity of footings on sand layer overlaying clay. Can Geotech J 11(2):223–229

    Article  Google Scholar 

  • Meyerhof GG, Hanna AM (1978) Ultimate bearing capacity of foundations on layered soils under inclined load. Can Geotech J 15(4):565–572

    Article  Google Scholar 

  • Michalowski RL (2002) Collapse loads over two-layer clay foundation soils. Soils Found 42(1):1–7

    Article  Google Scholar 

  • Michalowski RL, Shi L (1995) Bearing Capacity of Footings over two layers foundation soils. J Geotech Eng 5(421):421–428. https://doi.org/10.1061/(ASCE)0733-9410(1995)121

    Article  Google Scholar 

  • Mosallanezhad M, Moayedi H (2017) Comparison analysis of bearing capacity approaches for the strip footing on layered soils. Arab J Sci Eng 42(9):3711–3722

    Article  Google Scholar 

  • Okamura M, Takemura J, Kimura T (1998) Bearing capacity predictions of sand overlying clay based on limit equilibrium methods. Soils Found 38(1):181–194

    Article  Google Scholar 

  • Prandtl L (1921) Über die HärteplastischerKörper. Nachrichten von der Gesellschaft der Wissenschaftenzu Gottingen. Math Phys Klasse 74–85

  • Purushothamaraj P, Ramiahn BK, Rao KNV (1974) Bearing capacity of strip footing in two-layered cohesive-friction soils. Can Geotech J 11:32–45

    Article  Google Scholar 

  • Reddy AS, Srinivasan RS (1967) Bearing capacity of footings on layered clays. J Soil Mech Found Div ASCE 93(2):83–99

    Google Scholar 

  • Reissner H (1924) Zum, Erddruck problem. In: Proceeding, first international conference on applied mechanics. Delft, pp 295–311

  • Saha A, Ghosh S (2015) Pseudo-dynamic analysis for bearing capacity of foundation resting on c-ϕ soil. Int J Geotech Eng. https://doi.org/10.1179/1939787914y.0000000081

    Article  Google Scholar 

  • Saran S, Agarwal RK (1991) Bearing capacity of eccentrically obliquely loaded footing. J Geotech Eng 117(11):1669–1690

    Article  Google Scholar 

  • Satyanaraya AM, Garg RK (1980) Bearing capacity of footings on layered c–φ soils. J Geotech Eng Div ASCE 106 Gts:819–824

    Google Scholar 

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Evolutionary computation proceedings, IEEE world congress on computational intelligence

  • Terzaghi K (1943) Theoretical soil mechanics. Willey, New York

    Book  Google Scholar 

  • Vesic AS (1973) Analysis of ultimate loads of shallow foundations. J Soil Mech Found Div 10:45–73

    Google Scholar 

  • Yamaguchi H (1963) Practical formula of bearing capacity value for two layered ground. In: Proceedings of 2nd Asian conference on SMFE, pp 99–105

  • Zhu M (2004). Bearing capacity of strip footings on two-layer clay soil by finite element method. In: Proceedings of ABAQUS, Inc., Boston, pp 777–787

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Litan Debnath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} & A_{1} = \frac{{\gamma_{1} k_{p} }}{{2B_{0} \left\{ {k_{h} + \left( {1 \pm k_{v} } \right)} \right\}}}\left\{ {(1 + m)\tan \delta_{1} + (m - 1)} \right\} \\ & A_{2} = \frac{{\gamma_{1} D_{f} k_{p} }}{{B_{0} \left\{ {k_{h} + \left( {1 \pm k_{v} } \right)} \right\}}}\left\{ {(1 + m)\tan \delta_{1} + (m - 1)} \right\} \\ & \quad - \frac{{c_{1} k_{p} }}{{B_{0} \left\{ {k_{h} + \left( {1 \pm k_{v} } \right)} \right\}}}\left\{ {(1 + m)\tan \delta_{1} + (m - 1)} \right\}z - \frac{{c_{1} (1 + m)}}{{B_{0} \left\{ {k_{h} + \left( {1 \pm k_{v} } \right)} \right\}}} - \gamma_{1} \\ & p_{p\gamma } = \frac{1}{2}\gamma_{2} \frac{{B_{0}^{2} \sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{3} \alpha_{p} \,k_{p(static)} - \frac{1}{8}\gamma_{2} \frac{{B_{0}^{2} \sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin 2\alpha_{p} \sin \alpha_{p} \;k_{h} \\ & \quad + \frac{1}{4}\gamma_{2} \frac{{B_{0}^{2} \sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin 2\alpha_{p} \cos \alpha_{p} (1 \pm k_{v} ) - \frac{1}{4}\gamma_{2} \frac{{B_{0}^{2} \sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{3} \alpha_{p} \,k_{p(Decrement)} \\ & \quad + \frac{1}{2}\frac{1}{{\cos \phi_{2} \left( {1 + 9\tan^{2} \phi_{2} } \right)}}\frac{{B_{0}^{2} \sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\gamma_{2} \left[ {e^{{3\beta \tan \phi_{2} }} \left( {3\tan \phi_{2} \sin \beta - \cos \beta } \right) + 1} \right] \\ & \left[ {\frac{{\sin \nu - \cos \left( {\nu - \vartheta } \right)\cos \alpha_{A2} }}{\sin \nu \cos \vartheta }} \right]\left[ {\left( {1 \pm k_{v} } \right) - \cot \left( {\nu + \alpha_{A2} - \pi /2} \right)k_{h} } \right] \\ & p_{pq} = \gamma_{1} \left( {D_{f} + h_{1} } \right)\frac{{B_{0} \sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}k_{p(static)} \sin^{2} \alpha_{p} - \frac{2}{3}\gamma_{1} \left( {D_{f} + h_{1} } \right)\frac{{B_{0} \sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }} \\ & k_{p(Decrement)} \sin^{2} \alpha_{p} + \left( {D_{f} + h_{1} } \right)\gamma_{1} \frac{{B_{0} \sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\cos^{2} \alpha_{p} \left( {1 \pm k_{v} } \right) \\ & p_{pc} = 2c_{2} \frac{{B_{0} \sin \alpha_{A1} }}{{\sin (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{2} \alpha_{p} \sqrt {k_{p(static)} } + c_{2} \frac{{B_{0} \sin \alpha_{A1} }}{{\sin (\alpha_{A1} + \alpha_{A2} )\tan \phi_{2} }}\frac{{\left( {e^{{2\beta \tan \phi_{2} }} - 1} \right)}}{{\cos \phi_{2} }} \\ \end{aligned}$$

Appendix 2

$$\begin{aligned} & x = \left( {\frac{{\gamma_{2} }}{{\bar{\gamma }}}} \right)\frac{{\sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{3} \alpha_{p} k_{p(static)} - \frac{1}{4}\left( {\frac{{\gamma_{2} }}{{\bar{\gamma }}}} \right)\frac{{\sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin 2\alpha_{p} \sin \alpha_{p} k_{h} \\ & \quad + \frac{1}{2}\left( {\frac{{\gamma_{2} }}{{\bar{\gamma }}}} \right)\frac{{\sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin 2\alpha_{p} \cos \alpha_{p} (1 \pm k_{v} ) - \frac{1}{2}\left( {\frac{{\gamma_{2} }}{{\bar{\gamma }}}} \right)\frac{{\sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{3\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{3} \alpha_{p} k_{p(Decrement)} \\ & \quad + \frac{1}{{\left( {1 + 9\tan^{2} \phi_{2} } \right)}}\frac{{\sin^{2} \alpha_{A1} }}{{\sin^{2} (\alpha_{A1} + \alpha_{A2} )}}\frac{{\gamma_{2} }}{{\bar{\gamma }}}\frac{1}{{\cos \phi_{2} }}\left[ {e^{{3\beta \tan \phi_{2} }} \left( {3\tan \phi_{2} \sin \beta - \cos \beta } \right) + 1} \right]\,\left[ {\frac{{\sin \nu - \cos \left( {\nu - \vartheta } \right)\cos \alpha_{A2} }}{\sin \nu \,\cos \vartheta }} \right] \\ & \quad \left[ {\left( {1 \pm k_{v} } \right) - k_{h} \tan \left( {\nu + \alpha_{A2} - \frac{\pi }{2}} \right)} \right] \\ & y = 2\frac{{\gamma_{1} }}{{\bar{\gamma }}}\frac{{\left( {D_{f} + h_{1} } \right)}}{{B_{0} }}\frac{{\sin \alpha_{A1} }}{{\sin (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}k_{p(static)} \sin^{2} \alpha_{p} - \frac{4}{3}\left( {\frac{{\gamma_{1} }}{{\bar{\gamma }}}} \right)\left( {\frac{{\left( {D_{f} + h_{1} } \right)}}{{B_{0} }}} \right)\frac{{\sin \alpha_{A1} }}{{\sin (\alpha_{A1} + \alpha_{A2} )}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }} \\ & \quad k_{p(Decrement)} \sin^{2} \alpha_{p} + 2\frac{{h_{1} + D_{f} }}{{B_{0} }}\frac{{\gamma_{1} }}{{\bar{\gamma }}}\frac{{\sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)}}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\cos^{2} \alpha_{p} \left( {1 \pm k_{v} } \right) \\ & z = \frac{{2\bar{c}}}{{\bar{\gamma }B_{0} }}\frac{{c_{2} }}{{\bar{c}}}\left\{ {\frac{{2\sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)}}} \right\}\frac{{e^{{2\beta \tan \phi_{2} }} }}{{\cos \phi_{2} }}\sin^{2} \alpha {}_{p}\sqrt {k_{p(static)} } + \frac{{2\bar{c}}}{{\bar{\gamma }B_{0} }}\frac{{c_{2} }}{{\bar{c}}}\frac{{\sin \alpha_{A1} }}{{\sin \left( {\alpha_{A1} + \alpha_{A2} } \right)\tan \phi_{2} }}\frac{{\left( {e^{{2\beta \tan \phi_{2} }} - 1} \right)}}{{\cos \phi_{2} }} \\ \end{aligned}$$

\(x_{1}\), \(y_{1}\) and \(z_{1}\) can be obtained by substituting the angle of internal friction \(\phi_{2}\) by \(\phi_{m2}\) and changing the wedge angle \(\alpha_{A1}\) to \(\alpha_{A2}\) and \(\alpha_{A2}\) to \(\alpha_{A1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, L., Ghosh, S. Pseudo-Static Bearing Capacity Analysis of Shallow Strip Footing over Two-Layered Soil Considering Punching Shear Failure. Geotech Geol Eng 37, 3749–3770 (2019). https://doi.org/10.1007/s10706-019-00866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-019-00866-5

Keywords

Navigation