Skip to main content
Log in

A Review of the Tensile Strength of Rock: Concepts and Testing

  • Original paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

A review of the tensile strength of rock was conducted to determine the relationship between direct tensile strength (DTS) and Brazilian tensile strength (BTS) and to examine the validity of estimating tensile strength from other measured properties, such as the crack initiation (CI) threshold. A data set was gathered from the existing literature where tensile values could be reliably correlated with unconfined compressive strength or CI values. It was determined that the BTS obtained in standard testing is generally greater than the equivalent DTS and that this relationship is rock type dependent. CI yields a reasonable estimate of tensile strength and this correlation is improved when the BTS values are reduced to DTS values by rock type specific correlations. The factor f, in DTS = f BTS, can be considered to be approximately 0.9 for metamorphic, 0.8 for igneous and 0.7 for sedimentary rocks. The relationships presented demonstrate that there is wide scatter in the available data for estimating tensile strength likely due to both specimen variability and testing configuration, including platen geometry and relative stiffness. Estimates of tensile strength should only be used for preliminary design purposes and measurements should be made to confirm preliminary assumptions for each design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Akazawa T (1943) New test method for evaluating internal stress due to compression of concrete: the splitting tension test. J Japan Soc Civil Eng 29:777–787

    Google Scholar 

  • Alehossein H, Boland JN (2004) Strength, toughness, damage and fatigue of rock. In: Atrens A, Boland JN, Clegg R, Giffiths JR (eds) Proceedings of the international conference on structural integrity and fracture. Brisbane, Australia, SIF 836. http://espace.library.uq.edu.au/eserv/UQ:10122/Alehossein_sif04.pdf. Accessed 13 Oct 2013

  • Andreev GE (1991a) A review of the Brazilian test for rock tensile strength determination. Part I: calculation formula. Min Sci Technol 13(3):445–456. doi:10.1016/0167-9031(91)91006-4

    Article  Google Scholar 

  • Andreev GE (1991b) A review of the Brazilian test for rock tensile strength determination. Part II: contact conditions. Min Sci Technol 13(3):457–465. doi:10.1016/0167-9031(91)91035-G

    Article  Google Scholar 

  • ASTM (2008a) D2936-08: standard test method for direct tensile strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM (2008b) D3967-08: standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • Bell FG (1981) A survey of the physical properties of some carbonate rocks. Bull Int Assoc Eng Geol 24:105–110. doi:10.1007/BF02595261

    Article  Google Scholar 

  • Berrenbaum R, Brodie I (1959) Measurement of the tensile strength of brittle materials. Brit J Appl Phys 10:281–286. http://iopscience.iop.org/0508-3443/10/6/307. Accessed 14 Dec 2012

  • Betournay M (1983) Examinatin of URL-1, URL-2, and URL-5 Uniaxial compressive and tensile test data. Canadian Centre for Mineral and Energy Technology, Mining Research Laboratories Division Report, ERP/MRL 83-26(TR)

  • Bieniawski ZT (1967) Mechanism of brittle fracture of rock: part I—theory of the fracture process. Int J Rock Mech Min Sci Geomech Abs 4(4):395–406. doi:10.1016/0148-9062(67)90030-7

    Article  Google Scholar 

  • Brace WF (1964) Brittle fracture of rocks. In: Judd WR (ed) Proceedings of the International Conference on State of Stress in the Earth’s Crust. Elsevier, New York, pp 111–174

    Google Scholar 

  • Brace WF, Paulding B, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953. doi:10.1029/JZ071i016p03939

    Article  Google Scholar 

  • Cai M (2010) Practical estimates of tensile strength and the Hoek-Brown strength parameter m i of brittle rocks. Rock Mech Rock Eng 43:167–184. doi:10.1007/s00603-009-0053-1

    Article  Google Scholar 

  • Carneiro FLLB (1943) A new method to determine the tensile strength of concrete. In: Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules

  • Colback PSB (1966) An analysis of brittle fracture initiation and propagation in the Brazilian test. 1st ISRM congress. Lisbon, Portugal, 1CONGRESS-1966-066

  • Coviello A, Lagioia R, Nova R (2005) On the measurement of the tensile strength of soft rocks. Rock Mech Rock Eng 38(4):251–273. doi:10.1007/s00603-005-0054-7

    Article  Google Scholar 

  • Crouch SL (1970) Experimental determination of volumetric strains in failed rock. Int J Rock Mech Min Sci Geomech Abs 7(6):589–603. doi:10.1016/0148-9062(70)90020-3

    Article  Google Scholar 

  • Dan DQ, Konietzky H, Herbst M (2013) Brazilian tensile strength tests on some anisotropic rocks. Int J Rock Mech Min Sci 58:1–7. doi:10.1016/j.ijrmms.2012.08.010

    Google Scholar 

  • Diedeirchs MS (1999) Instability of hard rockmasses: the role of tensile damage and relaxation. PhD Thesis, Department of Civil Engineering, University of Waterloo, Waterloo, Canada, pp 566

  • Diederichs MS (2003) Rock fracture and collapse under low confinement conditions. Rock Mech Rock Eng 36(5):339–381. doi:10.1007/s00603-003-0015-y

    Article  Google Scholar 

  • Diederichs MS (2007) The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44:1082–1116. doi:10.1139/T07-033

    Article  Google Scholar 

  • Diederichs MS, Kaiser PK (1999) Tensile strength and abutment relaxation as failure control mechanics in underground excavations. Int J Rock Mech Min Sci 36:69–96. doi:10.1016/S0148-9062(98)00179-X

    Article  Google Scholar 

  • Diederichs MS, Martin CD (2010) Measurement of spalling parameters from laboratory testing. In: Zhao J, Labiouse V, Dudt JP, Mathier JF (eds) Proc of Eurock 2010. Lausanne, Switzerland

    Google Scholar 

  • Eberhardt E, Stead D, Stimpson B, Read RS (1998) Identifying crack initiation and propagation thresholds in brittle rock. Can Geotech J 35:222–233. doi:10.1139/t97-091

    Article  Google Scholar 

  • Efimov VP (2009) The rock strength in different tension conditions. J Min Sci 45(6):569–575. doi:10.1007/s10913-009-0071-0

    Article  Google Scholar 

  • Eloranta P (2006) Posiva laboratory testing report WR-2006-80. http://www.posiva.fi/

  • Eloranta P, Hakala M (1998) Posiva laboratory testing report WR-98-49. http://www.posiva.fi/

  • Eloranta P, Hakala M (1999) Posiva laboratory testing report WR-99-47. http://www.posiva.fi/

  • Erarslan N, Williams DJ (2012) Experimental, numerical and analytical studies on tensile strength of rocks. Int J Rock Mech Min Sci 49(1):21–30. doi:10.1016/j.ijrmms.2011.11.007

    Article  Google Scholar 

  • Fairhurst C (1961) Laboratory measurements of some physical properties of rock. In: Proceedings of the fourth symposium on rock mechanics. Pennsylvania, USA

  • Falls S (1993) Ultrasonic imaging and acoustic emission studies of microcrack development in lac du bonnet granite. PhD Thesis, Queens University, Kingston, Canada

  • Franklin JA, Dusseault MB (1989) Rock engineering. McGraw-Hill, New York, p 600

    Google Scholar 

  • Ghazvinian E, Diederichs M, Archibald J (2011) Challenges related to standardized detection of crack initiation thresholds for lower-bound or ultra-long-term strength prediction of rock. In: Proceedings of the Pan-Am CGS Geotechnical Conference. Toronto, Canada

  • Golder (2011) Geotechnical data report: geotechnical and hydrogeological investigation—Ottawa light rail transit (OLRT) tunnel (segment 2). Ottawa, Ontario. Report Number 10-1121-0222

  • Gorski B (1993) Tensile testing apparatus. United States Patent, 5193396

  • Gorski B, Yu YS (1991) Tensile strength tests on URL rock specimens from borehole 401-009-HF1. CANMET Mining Research Laboratories report MRL 91-080(TR)

  • Gorski B, Conlon B, Ljunggren B (2007) Forsmark Site investigation—Determination of the direct and indirect tensile strength on cores from borehole KFM01D. SKB P-07-76,Svensk ärnbränslehantering AB

  • Gorski B, Anderson T, Conlon T (2009) DGR site characterization documents, technical reports TR-07-03 and TR-08-11. www.nwmo.ca

  • Gorski B, Anderson T, Conlon T (2010) DGR site characterization documents, technical reports TR-08-24 and TR-08-36. www.nwmo.ca

  • Gorski B, Rodgers D, Conlon B (2011) DGR site characterization document, technical report TR-09-07 www.nwmo.ca

  • Grasle W, Plischke I (2010) LT experiment: mechanical behavior of Opalinus clay, final report from Phases 6-14. Mont Terri Project Technical Report 2009–07

  • Graue R, Siegesmund S, Middendorf B (2011) Quality assessment of replacement stones for the Cologne Cathedral: mineralogical and petrophysical requirements. Environ Earth Sci 63:1799–1822. doi:10.1007/s12665-011-1077-x

    Article  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221A:163–198

    Article  Google Scholar 

  • Griffith AA (1924) Theory of rupture. In: Proceedings of the 1st international congress on applied mechanics. Delft, pp 55–63

  • Haimson BC, Cornet FH (2003) ISRM suggested methods for rock stress estimation—Part 3: hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J of Rock Mech Min Sci 40:1011–1020. doi:10.1016/j.ijrmms.2003.08.002

    Article  Google Scholar 

  • Hakala M, Heikkila E (1997) Posiva laboratory testing reports WR-97-04, WR-97-07e. http://www.posiva.fi/

  • Hansen FD, Vogt TJ (1987) Thermo mechanical properties of selected shales. Oak Ridge National Laboratory Report ORNL/Sub/85-97343/2 (RSI-0305)

  • Hardy HR, Jayaraman NI (1970) An investigation of methods for the determination of the tensile strength of rock. In: Proceedings of the 2nd congress international society for rock mechanics, Belgrade, vol 3, pp 85–92

  • Heikkila E, Hakala M (1998) Posiva laboratory testing reports WR-98-06e, WR-98-21e. http://www.posiva.fi/

  • Hoek E (1964) Fracture of anisotropic rock. J S Afr Inst Min Metall 64(10):501–518. http://www.rocscience.com

  • Hoek E, Brown T (1997) Practical estimates of rock mass strength. J Rock Mech Min Sci 34(8):1165–1186. http://www.rocscience.com

  • Hondros G (1959) The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete. Aust J Appl Sci 10(3):243–268

    Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(3):99–103. doi:10.1016/0148-9062(78)90003-7

    Article  Google Scholar 

  • Jacobsson L (2004) Site investigation reports. Swedish nuclear fuel and waste management Co. Technical Reports P-04-170, P-04-172, P-04-173, P-04-174, P-04-223, P-04-225, and P-04-226. http://www.skb.se

  • Jacobsson L (2005) Site investigation reports. Swedish nuclear fuel and waste management Co. Technical Reports P-05-97, P-05-98, P-05-120, P-05-121, P-05-211, and P-05-212. http://www.skb.se

  • Jacobsson L (2006) Site investigation reports. Swedish nuclear fuel and waste management Co. Technical Reports P-06-37, P-06-38, P-06-73, P-06-74, P-06-270, P-06-271, P-06-299, and P-06-300. http://www.skb.se

  • Jacobsson L (2007) Site investigation reports. Swedish nuclear fuel and waste management Co. Technical Reports P-07-142, P-07-143, P-07-145, P-07-146, and P-07-207. http://www.skb.se

  • Jaeger JC (1967) Failure of rocks under tensile conditions. Int J Rock Mech Min Sci Geomech Abstr 4(2):219–227. doi:10.1016/0148-9062(67)90046-0

    Article  Google Scholar 

  • Jaeger JC, Cook NGW (1969) Fundamentals of rock mechanics. Methuen and Co Ltd., London, p 513

    Google Scholar 

  • Jaeger JC, Hoskins ER (1966) Rock failure under the confined Brazilian test. J Geophys Res 71:2651–2659. doi:10.1029/JZ071i010p02651

    Google Scholar 

  • Klanphumeesri S (2010) Direct tension testing of rock specimens. Masters of Engineering Thesis, Suranaree University of Technology

  • Lajtai EZ, Lajtai VN (1974) The evolution of brittle fracture in rocks. J Geo Soc 130(1):1–16. doi:10.1144/gsjgs.130.1.0001

    Article  Google Scholar 

  • Lama RD, Vutukuri VS (1978) Handbook on mechanical properties of rocks—testing techniques and results 3(1). Trans Tech Publications, Clausthal

    Google Scholar 

  • Langford JC (2013) Application of reliability methods to the design of underground structures. PhD Thesis, Queen’s University, Kingston, Ontario, Canada

  • Lee MY, Haimson BC (1993) Laboratory study of borehole breakouts in Lac du Bonnet Granite: a case of extensile failure mechanism. Int J Rock Mech Min Sci Geomech Abstr 30(7):1039–1045

    Article  Google Scholar 

  • Li D,Wong LNY (2012) The Brazilian disc test for rock mechanics applications: review and new insights. Rock Mech Rock Eng May. doi:10.1007/s00603-012-0257-7

  • Lim SS, Martin CD (2010) Core disking and its relationship with stress magnitude for Lac du Bonnet granite. Int J Rock Mech Min Sci 47: 254-264. doi:10.1016/j.ijrmms.2009.11.007

  • Lo KY, Hori M (1979) Deformation and strength properties of some rocks in Southern Ontario. Can Geotech J 16:108–120. doi:10.1139/t79-010

    Article  Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899. doi:10.1016/0148-9062(93)90041-B

    Article  Google Scholar 

  • Luong MP (1990) Tensile and shear strengths of concrete and rock. Eng Fract Mech 35(1,2,3):127–135. doi:10.1016/0013-7944(90)90190-R

  • Markides CF, Pazis DN, Kourkoulis SK (2011) Influence of friction on the stress field of the Brazilian tensile test. Rock Mech Rock Eng 44:113–119. doi:10.1007/s00603-010-0115-4

    Article  Google Scholar 

  • Markides CF, Pazis DN, Kourkoulis SK (2012) The Brazilian disc under non-uniform distribution of radial pressure and friction. Int J Rock Mech Min Sci 50(1):47–55. doi:10.1016/j.ijrmms.2011.12.012

    Article  Google Scholar 

  • Martin CD (1994) The strength of massive Lac du Bonnet Granite around underground openings. PhD Thesis, University of Manitoba

  • Mellor M, Hawkes I (1971) Measurement of tensile strength by diametral compression of discs and annuli. Eng Geol 5(3):173–225. doi:10.1016/0013-7952(71)90001-9

    Article  Google Scholar 

  • Mishra DA, Basu A (2012) Use of the block punch test to predict the compressive and tensile strengths of rocks. Int J Rock Mech Min Sci 51:119–127. doi:10.1016/j.ijrmms.2012.01.016

    Article  Google Scholar 

  • Murrell SAF (1963) A criterion for brittle fracture of rocks and concrete under triaxial stress and the effect of pore pressure on the criterion. In: Fairhurst (ed) Rock mechanics. Proceedings of the fifth rock mechanics symposium, University of Minnesota, Oxford, Pergamon, pp 563–577

  • Myer LR, Kemeny JM, Zheng Z, Suarex R, Ewy RT, Cook NGW (1992) Extensile cracking in porous rock under differential compressive stress. In: Li LY (ed) Micromechanical modeling of quasi-brittle materials behaviour. Applied Mechanics Reviews, 45(8):263–280. doi:10.1115/1.3119757

  • Pandey P, Singh DP (1986) Deformation of a rock in different tensile tests. Eng Geol 22(3):281–292. doi:10.1016/0013-7952(86)90029-3

    Article  Google Scholar 

  • Perras MA (2009) Tunnelling in horizontally laminated ground: the influence of lamination thickness on anisotropic behaviour and practical observations from the Niagara Tunnel Project. Masters Thesis, Queen’s University, Kingston, Ontario, Canada

  • Perras MA, Langford C, Ghazvinian E, Diederichs MS (2012) Numerical delineation of the excavation damage zones: from rock properties to statistical distribution of the dimensions. In: Proceedings of the Eurock, Stockholm, Sweden

  • Perras MA, Besaw D, Diederich MS (2013) Geological and geotechnical observations from the Niagara Tunnel Project. Submitted to the Bulletin of Engineering Geology and the Environment, BOEG-D-12-00133R1

  • Perras MA, Ghazvinian E, Amann F, Wannenmacher H, Diederichs MS, (2013b) Back analysis of rock mass behavior of the Quintner Limestone at the Gonzen mine near Sargans, Switzerland. In: The proceedings of Eurock 2013, Wroclaw, Poland

  • Pestman BJ, Van Munster JG (1996) An acoustic emission study of damage development and stress-memory effects in sandstone. Int J Rock Mech Min Sci 33(6):585–593. doi:10.1016/0148-9062(96)00011-3

  • Ramana YV, Sarma LP (1987) Split-collar tensile test grips for short rock cores. Eng Geol 23:255–261. doi:10.1016/0013-7952(87)90092-5

    Article  Google Scholar 

  • Scholz CH (1968) Microfracturing and the inelastic deformation of rock in compression. J Geophy Research 73(4):1417–1432. doi:10.1029/JB073i004p01417

  • Stacey TR (1981) A simple extension strain criterion for fracture of brittle rock. Int J Frac 18:469–474. doi:10.1016/0148-9062(81)90511-8

    Google Scholar 

  • Taponnier P, Brace WF (1976) Development of stress-induced microcracks in Westerly granite. Int J Rock Mech Min Sci and Geomech Abstr 13(4):103–112. doi:10.1016/0148-9062(76)91937-9

    Article  Google Scholar 

  • Tavallali A, Vervoort A (2010) Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mech Rock Eng 43(5):641–653. doi:10.1007/s00603-010-0084-7

    Article  Google Scholar 

  • Vutukuri VS, Lama RD, Saluja SS (1974) Handbook on mechanical properties of rocks. Series on rock and soil mechanics 2(1), Trans Tech Publications, Ohio, USA

  • Zhang L (2005) Engineering properties of rocks (pp: 175-202). Elsevier. Online version available at: http://www.knovel.com/web/portal/browse/display?_EXT_KNOVEL_DISPLAY_bookid=1848&VerticalID=0. Accessed 15 Dec 2012

Download references

Acknowledgments

The authors would like to thank the Nuclear Waste Management Organization (NWMO) of Canada and the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding this review. Special thanks is due to Dr. Evert Hoek for use of testing data and for discussions related to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Perras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perras, M.A., Diederichs, M.S. A Review of the Tensile Strength of Rock: Concepts and Testing. Geotech Geol Eng 32, 525–546 (2014). https://doi.org/10.1007/s10706-014-9732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-014-9732-0

Keywords

Navigation