Advertisement

Geotechnical and Geological Engineering

, Volume 27, Issue 4, pp 559–569 | Cite as

A Three-Dimensional Analysis of the Total and Effective Stresses in Submerged Backfilled Stopes

  • Li Li
  • Michel Aubertin
Original Paper

Abstract

The determination of the stress state in backfilled stopes is an important step for assessing the behaviour of mine openings and for designing barricades. Most previous analyses have considered only the 2D case (plane strain condition) and neglected the effect of pore water pressure. In this paper, a three-dimensional solution is proposed for totally or partly submerged backfill. The new solution gives the normal stresses along the vertical and horizontal axes, with the effect of a surface load on the backfill. The solution is validated using laboratory experimental results taken from the literature. The good agreement obtained between the proposed analytical solution and laboratory test results indicates that this new solution provides a realistic evaluation for both the total and effective stresses in vertical backfilled stopes.

Keywords

Backfill Mining stopes Effective stresses Total stresses Earth pressure 3D openings Analytical solutions 

Notes

Acknowledgments

The authors acknowledge the financial support from the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail du Québec (IRSST) and from the participants of the Industrial NSERC Polytechnique-UQAT Chair (http://www.polymtl.ca/enviro-geremi/). The authors thank Dr. John Molson for his review of the manuscript.

References

  1. Askew J, McCarthy PL, Fitzgerald DJ (1978) Backfill research for pillar extraction at ZC/NBHC. In: Mining with backfill: 12 canadian rock mechanics symposium, 23–25 May 1978, Sudbury. CIM pp 100–110Google Scholar
  2. Atkinson JH, Cairncross AM, James RG (1974) Model tests on shallow tunnels in sand and clay. Tunnels Tunn 6(4):28–32Google Scholar
  3. Aubertin M (1999) Application of soil mechanics to analyse the behaviour of underground backfill (in French). Short Course (unpublished lecture notes), 14th Ground Control Conference, Val-d’Or, 23–24 March 1999. Quebec Mining AssociationGoogle Scholar
  4. Aubertin M, Li L, Arnoldi S, Belem T, Bussière B, Benzaazoua M, Simon R (2003) Interaction between backfill and rock mass in narrow stopes. In: Culligan PJ, Einstein HH, Whittle AJ (eds) Soil and rock america, vol 1. Verlag Glückauf Essen (VGE), Essen, pp 1157–1164Google Scholar
  5. Aubertin M, Li L, Belem T, Simon R, Harvey A, James M, Benzaazoua M, Bussière B (2005) Methods to estimate induced pressures in backfilled stopes (in French). In: Symposium Rouyn-Noranda: mines and the environment (CD-ROM), 15–18 May 2005, Rouyn-Noranda, Quebec, Canada. CIMGoogle Scholar
  6. Aubertin M, Li L, Belem T, Simon R (2008) Évaluation des pressions dans les chantiers remblayés et sur les barricades. Symposium 2008: mines and the environment, November 2–5, 2008, Rouyn-Noranda, Quebec, Canada. CIMGoogle Scholar
  7. Belem T, El Aatar O, Benzaazoua M, Bussière B, Yilmaz E (2007) Hydro-geotechnical and geochemical characterization of column consolidated cemented paste backfill. In: 9th international symposium in mining with backfill, 29 April–2 May 2007, Montreal. CIMGoogle Scholar
  8. Benzaazoua M, Fall M, Belem T (2004) A contribution to understanding the hardening process of cemented pastefill. Miner Eng 17:141–152. doi: 10.1016/j.mineng.2003.10.022 CrossRefGoogle Scholar
  9. Blight GE (1986) Pressure exerted by materials stored in silos: part I, coarse materials. Geotech 36(1):33–46CrossRefGoogle Scholar
  10. Bloss M, Revell M (2000) Cannington paste fill system–achieving demand capacity. In: MassMin 2000, 29 October–2 November 2000, Brisbane. Australia. Australasian Institute of Mining and Metallurgy Publication, pp 713–720Google Scholar
  11. Cowin SC (1977) The theory of static loads in bins. J Appl Mech 44:409–412Google Scholar
  12. Godbout J, Bussière B, Aubertin M, Belem T (2007) Evolution of cemented paste backfill saturated hydraulic conductivity at early curing time. In: Proceedings of 60th Canadian geotechnical conference and the 8th joint CGS/IAH-CNC groundwater conference, 21–24 October 2007, Ottawa, pp 2230–2236Google Scholar
  13. Goel S, Patra NR (2008) Effect of arching on active earth pressure for rigid retaining walls considering translation mode. Int J Geomech 8(2):123–133. doi: 10.1061/(ASCE)1532-3641(2008)8:2(123) CrossRefGoogle Scholar
  14. Grabinsky M, Bawden W (2007) In situ measurements for geomechanical design of cemented paste backfill systems » . In: Minefill 2007, Montreal, April 30–May 2 2007, paper #2456 (also available at CIM on-line). CIMGoogle Scholar
  15. Grabinsky M, Bawden W, Thompson B (2008) Barricade performance in a paste filled Alimak stope. Symposium 2008: mines and the environment, November 2–5, 2008, Rouyn-Noranda, Quebec, Canada. CIMGoogle Scholar
  16. Handy RL (1985) The arch in soil arching. J Geotech Eng ASCE 111(3):302–318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302) CrossRefGoogle Scholar
  17. Hartlen J, Nielsen J, Ljunggren L (1984) The wall pressure in large grain silos. Swedish Council for Building Research, StockholmGoogle Scholar
  18. Helinski M, Fourie A, Fahey M, Ismail M (2007) Assessment of the self-desiccation process in cemented mine backfills. Can Geotech J 44:1148–1156. doi: 10.1139/T07-051 CrossRefGoogle Scholar
  19. Helinski M, Fourie A, Fahey M (2008) In situ monitoring and back analysis of two different paste backfill types. Symposium 2008: mines and the environment, November 2–5, 2008, Rouyn-Noranda, Quebec, Canada. CIMGoogle Scholar
  20. Janssen HA (1895) Versuche über Getreidedruck in Silozellen. Z Verein Ingenieure 39:1045–1049Google Scholar
  21. Kutzner C (1997) Earth and rockfill dams: principles of design and construction. Balkema, RotterdamGoogle Scholar
  22. Ladanyi B, Hoyaux B (1969) A study of the trap-door problem in a granular mass. Can Geotech J 6(1):1–14. doi: 10.1139/t69-001 CrossRefGoogle Scholar
  23. Li L, Aubertin M (2008) An improved analytical solution to estimate the stress state in sub-vertical backfilled stopes. Can Geotech J 45(10):1487–1496. doi: 10.1139/T08-060 CrossRefGoogle Scholar
  24. Li L, Aubertin M (2009a) Influence of water pressure on the stress state in stopes with cohesionless backfill. Geotech Geol Eng 27(1):1–11. doi: 10.1007/s10706-008-9207-2 CrossRefGoogle Scholar
  25. Li L, Aubertin M (2009b) A numerical investigation of the stress state in inclined backfilled stopes. Int J Geomech 9(2):52–62. doi: 10.1061/(ASCE)1532-3641(2009)9:2(52) CrossRefGoogle Scholar
  26. Li L, Aubertin M (2009c) Horizontal pressure on barricades for backfilled stopes. Part I: fully drained conditions. Can Geotech J 46(1):37–46. doi: 10.1139/T08-104 CrossRefGoogle Scholar
  27. Li L, Aubertin M (2009d) Horizontal pressure on barricades for backfilled stopes. Part II: submerged conditions. Can Geotech J 46(1):47–56. doi: 10.1139/T08-105 CrossRefGoogle Scholar
  28. Li L, Aubertin M (2009e) An elasto-plastic evaluation of the stress state around cylindrical openings based on a closed multiaxial yield surface. Int J Numer Anal Methods Geomech 33(2):193–213. doi: 10.1002/nag.709 CrossRefGoogle Scholar
  29. Li L, Aubertin M, Simon R, Bussière B, Belem T (2003) Modeling arching effects in narrow backfilled stopes with FLAC. In: Brummer R, Andrieux P, Detournay C, Hart R (eds) FLAC and Numerical Modeling in Geomechanics–2003. Balkema, Lisse, pp 211–219Google Scholar
  30. Li L, Aubertin M, Belem T (2005a) Formulation of a three dimensional analytical solution to evaluate stress in backfilled vertical narrow openings. Can Geotech J 42(6):1705–1717 (with Erratum 43(3):338–339)CrossRefGoogle Scholar
  31. Li L, Aubertin M, Simon R, Bussière B (2005b) Formulation and application of a general inelastic locus for geomaterials with variable porosity. Can Geotech J 42(2):601–623. doi: 10.1139/t04-113 CrossRefGoogle Scholar
  32. Li L, Aubertin M, Shirazi A, Belem T, Simon R (2007) Stress distribution in inclined backfilled stopes. In: Proceedings of the 9th international symposium in mining with backfill (on CD-ROM), 29 April–2 May 2007, Montreal. CIMGoogle Scholar
  33. Marston A (1930) The theory of external loads on closed conduits in the light of latest experiments. Bulletin no 96. Iowa Engineering Experiment Station, AmesGoogle Scholar
  34. McCarthy DF (1988) Essentials of soil mechanics and foundations: basic geotechnics. Prentice Hall, Englewood Cliffs, New JerseyGoogle Scholar
  35. Mitchell RJ (1992) Centrifuge model studies of fill pressures on temporary bulkheads. CIM Bull 85(960):48–54Google Scholar
  36. Ooi JY, Rotter JM (1990) Wall pressures in squat steel silos from simple finite element analysis. Comput Struc 37(4):361–374. doi: 10.1016/0045-7949(90)90026-X CrossRefGoogle Scholar
  37. Pirapakaran K, Sivakugan N (2007) A laboratory model to study arching within a hydraulic fill stope. Geotech Test J 30(6):1–8Google Scholar
  38. Richmond O, Gardner GC (1962) Limiting spans for arching of bulk materials in vertical channels. Chem Eng Sci 17:1071–1078. doi: 10.1016/0009-2509(62)80085-2 CrossRefGoogle Scholar
  39. Simms P, Grabinsky M, Zhan G (2007) Modelling evaporation of paste tailings from the Bulyanhulu mine. Can Geotech J 44:1417–1432. doi: 10.1139/T07-067 CrossRefGoogle Scholar
  40. Soderberg RL, Busch RA (1985) Bulkheads and drains for high sandfill stopes. Report of investigations 8959. United States Bureau of Mines, SpokaneGoogle Scholar
  41. Spangler MG, Handy RL (1984) Soil engineering. Harper and Row, New YorkGoogle Scholar
  42. Take WA, Valsangkar AJ (2001) Earth pressures on unyielding retaining walls of narrow backfill width. Can Geotech J 38:1220–1230. doi: 10.1139/cgj-38-6-1220 CrossRefGoogle Scholar
  43. Terzaghi K (1943) Theoretical soil mechanics. John Wiley & Sons, New YorkCrossRefGoogle Scholar
  44. Winch CM (1999) Geotechnical characteristics and stability of paste backfill at BHP Cannington Mine. B Eng Thesis, James Cook University, AustraliaGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Civil, Geological and Mining EngineeringÉcole Polytechnique de MontréalMontréalCanada
  2. 2.GenivarQuebecCanada
  3. 3.Industrial NSERC Polytechnique-UQAT Chair on Environment and Mine Wastes ManagementMontréalCanada

Personalised recommendations