Intensive long-term monitoring of soil organic carbon and nutrients in Northern Germany

Abstract

Since 2003, the regional long-term soil monitoring network (SMN) Schleswig–Holstein (SH) includes an intensive monitoring program (I-BDF) with (sub-)annual measurements at four sites. This is the first study investigating the benefits of this SMN where study sites are no experiments but managed by independent farmers. The main objective of this study was to investigate whether, and under which circumstances, annual soil carbon and nutrient measurements are more beneficial within a soil monitoring network than common five- to ten-year measurements using modeling and nutrient balances. Soil measurements (stocks of soil organic carbon (SOC), Ntot, P and Mg), weekly leachate-NO3–N and management data were used for comparison. C and N changes were modeled with DNDC (DeNitrification–DeComposition); P and Mg were calculated as full nutrient balances and compared to the observations using performance metrics. The results show that DNDC could reproduce the long-term trend of SOC and Ntot well, but this could also be by coincidence as the type of trendline depended on the starting year. The model results could not depict measured short-term variations in soil which were due to field heterogeneities caused by farm management. NO3-N leaching was strongly overestimated when organic fertilization and stronger rainfall occurred. Comparing stock changes with nutrient balances revealed that, in several cases, long-term trends could be shown to a limited extent and reproduced only very few short-term changes and variations. The results suggest that only annual soil property measurements can depict the soil’s variability and contribute to the identification of the true long-term trend.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Addiscott TM, Whitmore AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J Agric Sci Camb 109:141–157

    Article  Google Scholar 

  2. Ad-Hoc-AG Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Hannover, Berlin

    Google Scholar 

  3. Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby N, Grolleau E (2002) A new projection in France: a multi-institutional soil quality monitoring network. Comptes Rendus de l’Académie d’Agriculture de France (France)

  4. Brilli L, Bechini L, Bindi M, Carozzi M, Cavalli D, Conant R, Ferrise R, Bellochi G (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci Total Environ 598:445–470

    CAS  PubMed  Article  Google Scholar 

  5. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Brussaard L (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125

    Article  CAS  Google Scholar 

  6. Chen Z, Wang J, Deng N, Lv C, Wang Q, Yu H, Li W (2018) Modeling the effects of farming management practices on soil organic carbon stock at a county-regional scale. CATENA 160:76–89

    CAS  Article  Google Scholar 

  7. Congreves KA, Dutta B, Grant BB, Smith WN, Desjardins RL, Wagner-Riddle C (2016) How does climate variability influence nitrogen loss in temperate agroecosystems under contrasting management systems? Agric Ecosyst Environ 227:33–41

    CAS  Article  Google Scholar 

  8. Desaules A (2012) Measurement instability and temporal bias in chemical soil monitoring: sources and control measures. Environ Monit Assess 184(1):487–502

    PubMed  Article  Google Scholar 

  9. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (DVWK), Merkblätter zur Wasserwirtschaft 238/1996. Kommissionsbetrieb Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn

  10. DWD (2017) Deutscher Wetterdienst: Weather data (daily maximum and minimum temperature, relative humidity and wind speed) of the weather stations Strucklahnungshörn, Hattstedt, Bordelum, Kiel-Leuchtturm, Schönhagen and Osdorf; for the time period from 2005 to 2015

  11. Egner H, Riem H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl Lantbrukhoegskolan Annonsera Ann 26:199–215

    CAS  Google Scholar 

  12. Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222

    CAS  Article  Google Scholar 

  13. Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dörsch P, Flessa H, Smith KA (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosyst 52:77–105

    CAS  Article  Google Scholar 

  14. Giani L, Makowsky L, Mueller K (2014) Plaggic Anthrosol: soil of the year 2013 in Germany: an overview on its formation, distribution, classification, soil function and threats. J Plant Nutr Soil Sci 177(3):320–329

    CAS  Article  Google Scholar 

  15. Gilhespy SL, Anthony S, Cardenas L, Chadwick D, del Prado A, Li C, Yeluripati JB (2014) First 20 years of DNDC (DeNitrification DeComposition) model evolution. Ecol Modell 292:51–62

    CAS  Article  Google Scholar 

  16. Giltrap DL, Li C, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136(3–4):292–300

    CAS  Article  Google Scholar 

  17. Gubler A, Schwab P, Wächter D, Meuli RG, Keller A (2015) Ergebnisse der Nationalen Bodenbeobachtung (NABO) 1985–2009. Zustand und Veränderungen der anorganischen Schadstoffe und Bodenbegleitparameter. Umwelt-Zustand, (1507), 81

  18. Guest G, Kröbel R, Grant B, Smith W, Sansoulet J, Pattey E, Desjardins R, Jégo G, Tremblay N, Tremblay G (2017) Model comparison of soil processes in eastern Canada using DayCent, DNDC and STICS. Nutr Cycl Agroecosyst 109(3):211–232

    CAS  Article  Google Scholar 

  19. IUSS Working Group WRB (2006) World reference base for soil resources 2006. 2nd ed. World Soil Resources Reports No. 103. FAO, Rome

  20. Jäger N, Stange CF, Ludwig B, Flessa H (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments — a laboratory study. Biol Fertil Soils 47(5):483

    Article  CAS  Google Scholar 

  21. Jahn R, Blume HP, Asio VB, Spaargaren O, Schad P (2006) Guidelines for soil description. FAO, Rome

    Google Scholar 

  22. Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, Harrison RB, Guerrini IA, Richter DdeB Jr, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468–469:376–383

    PubMed  Article  CAS  Google Scholar 

  23. Jarecki M, Grant B, Smith W, Deen B, Drury C, VanderZaag A, Qian B, Yang J, Wagner-Riddle C (2018) Long-term trends in corn yields and soil carbon under diversified crop rotations. J Environ Qual 47:635–643

    CAS  PubMed  Article  Google Scholar 

  24. Kaufmann-Boll C (Ed.) (2012) Bodendaten in Deutschland: Übersicht über die wichtigsten Mess-und Erhebungsaktivitäten für Böden. ahu AG Wasser, Boden, Geomatik

  25. Kröbel R, Sun Q, Ingwersen J, Chen X, Zhang F, Müller T, Römheld V (2010) Modelling water dynamics with DNDC and DAISY in a soil of the North China Plain: a comparative study. Environ Modell Softw 25(4):583–601

    Article  Google Scholar 

  26. LfL—Bayerische Landesanstalt für Landwirtschaft (2013) Basisdaten Stand 2013 für die Umsetzung der Düngeverordnung, Germany

  27. Li CS (1998) User’s guide for the DNDC model. Institute for the Study of Earth, Ocean and Space University of New Hampshire, Durham

    Google Scholar 

  28. Li CS (2012) User’s guide for the DNDC model (version 95). Institute for the Study of Earth, Oceans and Space, Durham

    Google Scholar 

  29. Li C, Frolking S, Frolking TA (1992a) A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. J Geophys Res 97:9759–9776

    CAS  Article  Google Scholar 

  30. Li C, Frolking S, Frolking TA (1992b) A model of nitrous oxide evolution from soil driven by rainfall events: 2. Appl J Geophys Res 97:9777–9783

    CAS  Article  Google Scholar 

  31. Li C, Frolking S, Crocker GJ, Grace PR, Klír J, Körchens M, Poulton PR (1997) Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma 81(1–2):45–60

    Article  Google Scholar 

  32. LKSH—Landwirtschaftskammer Schleswig-Holstein (2009) Richtwerte für die Düngung 2009, 20th edn. LKSH—Landwirtschaftskammer Schleswig-Holstein, Rendsburg

    Google Scholar 

  33. LLUR – State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig-Holstein (2017) Unpublished soil, leachate, deposition and management data of the long-term soil monitoring network „Boden-Dauerbeobachtung Schleswig-Holstein“. LLUR – State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig-Holstein, Flintbek

    Google Scholar 

  34. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contain Hydrol 7:51–73

    CAS  Article  Google Scholar 

  35. Louis BP, Saby NPA, Orton TG, Lacarce E, Boulonne L, Jolivet C, Ratié C, Arrouays D (2014) Statistical sampling design impact on predictive quality of harmonization functions between soil monitoring networks. Geoderma 213:133–143

    Article  Google Scholar 

  36. Ludwig B, Bergstermann A, Priesack E, Flessa H (2011a) Modelling of crop yields and N2O emissions from silty arable soils with differing tillage in two long-term experiments. Soil Tillage Res 112(2):114–121

    Article  Google Scholar 

  37. Ludwig B, Jäger N, Priesack E, Flessa H (2011b) Application of the DNDC model to predict N2O emissions from sandy arable soils with differing fertilization in a long-term experiment. J Plant Nutr Soil Sci 174(3):350–358

    CAS  Article  Google Scholar 

  38. Montanarella L, Tóth G, Jones A (2011) Soil components in the 2009 LUCAS survey. In: Tóth G, Németh T (eds) Land quality and land use information - in the European Union. Office for Official Publications of the European Communities, Luxembourg, pp 209–220

    Google Scholar 

  39. Nerger R (2010) Boden-Dauerbeobachtung Schleswig-Holstein: Auswertung der Projektergebnisse im Hinblick auf Aussagen zu Veränderungen von Böden, Aussagefähigkeit und Optimierung der eingesetzten Untersuchungsverfahren. Expert assessment, project report and annexes, Kiel University, Institute for Natural Resource Conservation, Department of Hydrology and Water resources management, 234 pp. (excl. annexes), Kiel, Germany

  40. Nerger R, Beylich A, Fohrer N (2016) Long-term monitoring of soil quality changes in Northern Germany. Geod Reg 7(2):239–249

    Google Scholar 

  41. Ogle SM, Breidt FJ, Easter M, Williams S, Killian K, Paustian K (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob Change Biol 16:810–822

    Article  Google Scholar 

  42. Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O (2018) LUCAS soil, the largest expandable soil dataset for Europe: a review. Eur J Soil Sci 69:140–153

    Article  Google Scholar 

  43. Prechtel A, von Lützow M, Uwe Schneider B, Bens O, Bannick CG, Kögel-Knabner I, Hüttl RF (2009) Organic carbon in soils of Germany: status quo and the need for new data to evaluate potentials and trends of soil carbon sequestration. J Plant Nutr Soil Sci 172(5):601–614

    CAS  Article  Google Scholar 

  44. Schachtschabel P (1956) Die Magnesiumversorgung nordwestdeutscher Böden und seine Beziehungen zum Auftreten von Mangelsymptomen an Kartoffeln. Z Pflanzenern Bodenkde 74:202–219

    CAS  Article  Google Scholar 

  45. Springob G, Kirchmann H (2002) C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol Biochem 34(11):1571–1581

    CAS  Article  Google Scholar 

  46. Tonitto C, David MB, Li C, Drinkwater LE (2007) Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations. Nutr Cycl Agroecosyst 78(1):65–81

    Article  Google Scholar 

  47. Tonitto C, Li C, Seidel R, Drinkwater L (2010) Application of the DNDC model to the rodale institute farming systems trial: challenges for the validation of drainage and nitrate leaching in agroecosystem models. Nutr Cycl Agroecosyst 87(3):483–494

    Article  Google Scholar 

  48. Trigalet S, Chartin C, Krüger I, Carnol M, Van Oost K, van Wesemael B (2017) Soil organic carbon fractionation for improving agricultural soil quality assessment–a case study in Southern Belgium (Wallonia). Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment, 21(S1)

  49. Uzoma KC, Smith W, Grant B, Desjardins RL, Gao X, Hanis K, Tenuta M, Goglio P, Li C (2015) Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the CAN-DNDC model. Agric Ecosyst Environ 206:71–83

    CAS  Article  Google Scholar 

  50. van Leeuwen JP, Saby NPA, Jones A, Louwagie G, Micheli E, Rutgers M, Schulte RPO, Spiegel H, Toth G, Creamer RE (2017) Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ Res Lett 12(12):124007

    Article  Google Scholar 

  51. van Wesemael B, Paustian K, Andrén O, Cerri C, Dodd M, Etchevers J (2011) How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO fluxes in agricultural soils? Plant Soil 338:247–259

    CAS  Article  Google Scholar 

  52. van Wesemael B, Chartin C, Wiesmeier M, von Lützow M, Hobley E, Carnol M, Krüger I, Campione M, Roisine C, Hennart S, Kögel-Knabner I (2019) An indicator for organic matter dynamics in temperate agricultural soils. Agric Ecosyst Environ 274:62–75

    Article  Google Scholar 

  53. Vogeler I, Giltrap D, Cichota R (2013) Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Sci Total Environ 465:147–155

    CAS  PubMed  Article  Google Scholar 

  54. Wendling U, Schellin HG, Thomae M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Zeitschrift für Meteorol 41:468–475

    Google Scholar 

  55. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333:149–162

    CAS  Article  Google Scholar 

  56. Zhang W, Liu C, Zheng X, Zhou Z, Cui F, Zhu B, Haas E, Klatt S, Butterbach-Bahl K, Kiese R (2015) Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agric Syst 140:1–10

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank both the Department Geology and Soil, Soil Conservation of the State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig–Holstein (LLUR) and the Ministry of Energy, Agriculture, the Environment, Nature and Digitalization of the Federal State Schleswig–Holstein (MELUND) for the financial support (LLUR Grant Number: 4121-3-2007-440F), the good cooperation, and the data supply.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rainer Nerger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nerger, R., Klüver, K., Cordsen, E. et al. Intensive long-term monitoring of soil organic carbon and nutrients in Northern Germany. Nutr Cycl Agroecosyst 116, 57–69 (2020). https://doi.org/10.1007/s10705-019-10027-y

Download citation

Keywords

  • Long-term soil monitoring
  • I-BDF
  • SOC change
  • Soil modeling
  • DNDC
  • Nutrient balances
  • Schleswig–Holstein